25 minute read

posted: 01-Aug-2025 & updated: 03-Aug-2025

\[% \newcommand{\algA}{\algk{A}} \newcommand{\algC}{\algk{C}} \newcommand{\bigtimes}{\times} \newcommand{\compl}[1]{\tilde{#1}} \newcommand{\complexes}{\mathbb{C}} \newcommand{\dom}{\mathop{\bf dom {}}} \newcommand{\ereals}{\reals\cup\{-\infty,\infty\}} \newcommand{\field}{\mathbb{F}} \newcommand{\integers}{\mathbb{Z}} \newcommand{\lbdseqk}[1]{\seqk{\lambda}{#1}} \newcommand{\meas}[3]{({#1}, {#2}, {#3})} \newcommand{\measu}[2]{({#1}, {#2})} \newcommand{\meast}[3]{\left({#1}, {#2}, {#3}\right)} \newcommand{\naturals}{\mathbb{N}} \newcommand{\nuseqk}[1]{\seqk{\nu}{#1}} \newcommand{\pair}[2]{\langle {#1}, {#2}\rangle} \newcommand{\rationals}{\mathbb{Q}} \newcommand{\reals}{\mathbb{R}} \newcommand{\seq}[1]{\left\langle{#1}\right\rangle} \newcommand{\powerset}{\mathcal{P}} \newcommand{\pprealk}[1]{\reals_{++}^{#1}} \newcommand{\ppreals}{\mathbb{R}_{++}} \newcommand{\prealk}[1]{\reals_{+}^{#1}} \newcommand{\preals}{\mathbb{R}_+} \newcommand{\tXJ}{\topos{X}{J}} % \newcommand{\relint}{\mathop{\bf relint {}}} \newcommand{\boundary}{\mathop{\bf bd {}}} \newcommand{\subsetset}[1]{\mathcal{#1}} \newcommand{\Tr}{\mathcal{\bf Tr}} \newcommand{\symset}[1]{\mathbf{S}^{#1}} \newcommand{\possemidefset}[1]{\mathbf{S}_+^{#1}} \newcommand{\posdefset}[1]{\mathbf{S}_{++}^{#1}} \newcommand{\ones}{\mathbf{1}} \newcommand{\Prob}{\mathop{\bf Prob {}}} \newcommand{\prob}[1]{\Prob\left\{#1\right\}} \newcommand{\Expect}{\mathop{\bf E {}}} \newcommand{\Var}{\mathop{\bf Var{}}} \newcommand{\Mod}[1]{\;(\text{mod}\;#1)} \newcommand{\ball}[2]{B(#1,#2)} \newcommand{\generates}[1]{\langle {#1} \rangle} \newcommand{\isomorph}{\approx} \newcommand{\isomorph}{\approx} \newcommand{\nullspace}{\mathcalfont{N}} \newcommand{\range}{\mathcalfont{R}} \newcommand{\diag}{\mathop{\bf diag {}}} \newcommand{\rank}{\mathop{\bf rank {}}} \newcommand{\Ker}{\mathop{\mathrm{Ker} {}}} \newcommand{\Map}{\mathop{\mathrm{Map} {}}} \newcommand{\End}{\mathop{\mathrm{End} {}}} \newcommand{\Img}{\mathop{\mathrm{Im} {}}} \newcommand{\Aut}{\mathop{\mathrm{Aut} {}}} \newcommand{\Gal}{\mathop{\mathrm{Gal} {}}} \newcommand{\Irr}{\mathop{\mathrm{Irr} {}}} \newcommand{\arginf}{\mathop{\mathrm{arginf}}} \newcommand{\argsup}{\mathop{\mathrm{argsup}}} \newcommand{\argmin}{\mathop{\mathrm{argmin}}} \newcommand{\ev}{\mathop{\mathrm{ev} {}}} \newcommand{\affinehull}{\mathop{\bf aff {}}} \newcommand{\cvxhull}{\mathop{\bf Conv {}}} \newcommand{\epi}{\mathop{\bf epi {}}} \newcommand{\injhomeo}{\hookrightarrow} \newcommand{\perm}[1]{\text{Perm}(#1)} \newcommand{\aut}[1]{\text{Aut}(#1)} \newcommand{\ideal}[1]{\mathfrak{#1}} \newcommand{\bigset}[2]{\left\{#1\left|{#2}\right.\right\}} \newcommand{\bigsetl}[2]{\left\{\left.{#1}\right|{#2}\right\}} \newcommand{\primefield}[1]{\field_{#1}} \newcommand{\dimext}[2]{[#1:{#2}]} \newcommand{\restrict}[2]{#1|{#2}} \newcommand{\algclosure}[1]{#1^\mathrm{a}} \newcommand{\finitefield}[2]{\field_{#1^{#2}}} \newcommand{\frobmap}[2]{\varphi_{#1,{#2}}} % %\newcommand{\algfontmode}{} % %\ifdefined\algfontmode %\newcommand\mathalgfont[1]{\mathcal{#1}} %\newcommand\mathcalfont[1]{\mathscr{#1}} %\else \newcommand\mathalgfont[1]{\mathscr{#1}} \newcommand\mathcalfont[1]{\mathcal{#1}} %\fi % %\def\DeltaSirDir{yes} %\newcommand\sdirletter[2]{\ifthenelse{\equal{\DeltaSirDir}{yes}}{\ensuremath{\Delta #1}}{\ensuremath{#2}}} \newcommand{\sdirletter}[2]{\Delta #1} \newcommand{\sdirlbd}{\sdirletter{\lambda}{\Delta \lambda}} \newcommand{\sdir}{\sdirletter{x}{v}} \newcommand{\seqk}[2]{#1^{(#2)}} \newcommand{\seqscr}[3]{\seq{#1}_{#2}^{#3}} \newcommand{\xseqk}[1]{\seqk{x}{#1}} \newcommand{\sdirk}[1]{\seqk{\sdir}{#1}} \newcommand{\sdiry}{\sdirletter{y}{\Delta y}} \newcommand{\slen}{t} \newcommand{\slenk}[1]{\seqk{\slen}{#1}} \newcommand{\ntsdir}{\sdir_\mathrm{nt}} \newcommand{\pdsdir}{\sdir_\mathrm{pd}} \newcommand{\sdirnu}{\sdirletter{\nu}{w}} \newcommand{\pdsdirnu}{\sdirnu_\mathrm{pd}} \newcommand{\pdsdiry}{\sdiry_\mathrm{pd}} \newcommand\pdsdirlbd{\sdirlbd_\mathrm{pd}} % \newcommand{\normal}{\mathcalfont{N}} % \newcommand{\algk}[1]{\mathalgfont{#1}} \newcommand{\collk}[1]{\mathcalfont{#1}} \newcommand{\classk}[1]{\collk{#1}} \newcommand{\indexedcol}[1]{\{#1\}} \newcommand{\rel}{\mathbf{R}} \newcommand{\relxy}[2]{#1\;\rel\;{#2}} \newcommand{\innerp}[2]{\langle{#1},{#2}\rangle} \newcommand{\innerpt}[2]{\left\langle{#1},{#2}\right\rangle} \newcommand{\closure}[1]{\overline{#1}} \newcommand{\support}{\mathbf{support}} \newcommand{\set}[2]{\{#1|#2\}} \newcommand{\metrics}[2]{\langle {#1}, {#2}\rangle} \newcommand{\interior}[1]{#1^\circ} \newcommand{\topol}[1]{\mathfrak{#1}} \newcommand{\topos}[2]{\langle {#1}, \topol{#2}\rangle} % topological space % \newcommand{\alg}{\algk{A}} \newcommand{\algB}{\algk{B}} \newcommand{\algF}{\algk{F}} \newcommand{\algR}{\algk{R}} \newcommand{\algX}{\algk{X}} \newcommand{\algY}{\algk{Y}} % \newcommand\coll{\collk{C}} \newcommand\collB{\collk{B}} \newcommand\collF{\collk{F}} \newcommand\collG{\collk{G}} \newcommand{\tJ}{\topol{J}} \newcommand{\tS}{\topol{S}} \newcommand\openconv{\collk{U}} % \newenvironment{my-matrix}[1]{\begin{bmatrix}}{\end{bmatrix}} \newcommand{\colvectwo}[2]{\begin{my-matrix}{c}{#1}\\{#2}\end{my-matrix}} \newcommand{\colvecthree}[3]{\begin{my-matrix}{c}{#1}\\{#2}\\{#3}\end{my-matrix}} \newcommand{\rowvecthree}[3]{\begin{bmatrix}{#1}&{#2}&{#3}\end{bmatrix}} \newcommand{\mattwotwo}[4]{\begin{bmatrix}{#1}&{#2}\\{#3}&{#4}\end{bmatrix}} % \newcommand\optfdk[2]{#1^\mathrm{#2}} \newcommand\tildeoptfdk[2]{\tilde{#1}^\mathrm{#2}} \newcommand\fobj{\optfdk{f}{obj}} \newcommand\fie{\optfdk{f}{ie}} \newcommand\feq{\optfdk{f}{eq}} \newcommand\tildefobj{\tildeoptfdk{f}{obj}} \newcommand\tildefie{\tildeoptfdk{f}{ie}} \newcommand\tildefeq{\tildeoptfdk{f}{eq}} \newcommand\xdomain{\mathcalfont{X}} \newcommand\xobj{\optfdk{\xdomain}{obj}} \newcommand\xie{\optfdk{\xdomain}{ie}} \newcommand\xeq{\optfdk{\xdomain}{eq}} \newcommand\optdomain{\mathcalfont{D}} \newcommand\optfeasset{\mathcalfont{F}} % \newcommand{\bigpropercone}{\mathcalfont{K}} % \newcommand{\prescript}[3]{\;^{#1}{#3}} % %\]

Introduction

Preamble

Notations

  • sets of numbers
    • $\naturals$ - set of natural numbers
    • $\integers$ - set of integers
    • $\integers_+$ - set of nonnegative integers
    • $\rationals$ - set of rational numbers
    • $\reals$ - set of real numbers
    • $\preals$ - set of nonnegative real numbers
    • $\ppreals$ - set of positive real numbers
    • $\complexes$ - set of complex numbers
  • sequences $\seq{x_i}$ and the like
    • finite $\seq{x_i}_{i=1}^n$, infinite $\seq{x_i}_{i=1}^\infty$ - use $\seq{x_i}$ whenever unambiguously understood
    • similarly for other operations, e.g., $\sum x_i$, $\prod x_i$, $\cup A_i$, $\cap A_i$, $\bigtimes A_i$
    • similarly for integrals, e.g., $\int f$ for $\int_{-\infty}^\infty f$
  • sets
    • $\compl{A}$ - complement of $A$
    • $A\sim B$ - $A\cap \compl{B}$
    • $A\Delta B$ - $(A\cap \compl{B}) \cup (\compl{A} \cap B)$
    • $\powerset(A)$ - set of all subsets of $A$
  • sets in metric vector spaces
    • $\closure{A}$ - closure of set $A$
    • $\interior{A}$ - interior of set $A$
    • $\relint A$ - relative interior of set $A$
    • $\boundary A$ - boundary of set $A$
  • set algebra
    • $\sigma(\subsetset{A})$ - $\sigma$-algebra generated by $\subsetset{A}$, i.e., smallest $\sigma$-algebra containing $\subsetset{A}$
  • norms in $\reals^n$
    • $\|x\|_p$ ($p\geq1$) - $p$-norm of $x\in\reals^n$, i.e., $(|x_1|^p + \cdots + |x_n|^p)^{1/p}$
    • e.g., $\|x\|_2$ - Euclidean norm
  • matrices and vectors
    • $a_{i}$ - $i$-th entry of vector $a$
    • $A_{ij}$ - entry of matrix $A$ at position $(i,j)$, i.e., entry in $i$-th row and $j$-th column
    • $\Tr(A)$ - trace of $A \in\reals^{n\times n}$, i.e., $A_{1,1}+ \cdots + A_{n,n}$
  • symmetric, positive definite, and positive semi-definite matrices
    • $\symset{n}\subset \reals^{n\times n}$ - set of symmetric matrices
    • $\possemidefset{n}\subset \symset{n}$ - set of positive semi-definite matrices; $A\succeq0 \Leftrightarrow A \in \possemidefset{n}$
    • $\posdefset{n}\subset \symset{n}$ - set of positive definite matrices; $A\succ0 \Leftrightarrow A \in \posdefset{n}$
  • sometimes, use Python script-like notations (with serious abuse of mathematical notations)
    • use $f:\reals\to\reals$ as if it were $f:\reals^n \to \reals^n$, e.g., $$ \exp(x) = (\exp(x_1), \ldots, \exp(x_n)) \quad \mbox{for } x\in\reals^n $$ and $$ \log(x) = (\log(x_1), \ldots, \log(x_n)) \quad \mbox{for } x\in\ppreals^n $$ which corresponds to Python code numpy.exp(x) or numpy.log(x) where x is instance of numpy.ndarray, i.e., numpy array
    • use $\sum x$ to mean $\ones^T x$ for $x\in\reals^n$, i.e. $$ \sum x = x_1 + \cdots + x_n $$ which corresponds to Python code x.sum() where x is numpy array
    • use $x/y$ for $x,y\in\reals^n$ to mean $$ \rowvecthree{x_1/y_1}{\cdots}{x_n/y_n}^T $$ which corresponds to Python code x / y where x and y are $1$-d numpy arrays
    • use $X/Y$ for $X,Y\in\reals^{m\times n}$ to mean $$ \begin{my-matrix}{cccc} X_{1,1}/Y_{1,1} & X_{1,2}/Y_{1,2} & \cdots & X_{1,n}/Y_{1,n} \\ X_{2,1}/Y_{2,1} & X_{2,2}/Y_{2,2} & \cdots & X_{2,n}/Y_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ X_{m,1}/Y_{m,1} & X_{m,2}/Y_{m,2} & \cdots & X_{m,n}/Y_{m,n} \end{my-matrix} $$ which corresponds to Python code X / Y where X and Y are $2$-d numpy arrays

Some definitions

statement $P_n$, said to happen infinitely often or i.o. if $$ \left( \forall N\in\naturals \right) \left( \exists n > N \right) \left( P_n \right) $$
statement $P(x)$, said to happen almost everywhere or a.e. or almost surely or a.s. (depending on context) associated with measure space $\meas{X}{\algB}{\mu}$ if $$ \mu \set{x}{P(x)} = 1 $$ or equivalently $$ \mu \set{x}{\sim P(x)} = 0 $$

Some conventions

  • (for some subjects) use following conventions
    • $0\cdot \infty = \infty \cdot 0 = 0$
    • $(\forall x\in\ppreals)(x\cdot \infty = \infty \cdot x = \infty)$
    • $\infty \cdot \infty = \infty$

Real Analysis

Set Theory

Some principles

$$ P(1) \& [P(n\Rightarrow P(n+1)] \Rightarrow (\forall n \in \naturals)P(n) $$
each nonempty subset of $\naturals$ has a smallest element
for $f:X\to X$ and $a\in X$, exists unique infinite sequence $\langle x_n\rangle_{n=1}^\infty\subset X$ such that $$ x_1=a $$ and $$ \left( \forall n \in \naturals \right) \left( x_{n+1} = f(x_n) \right) $$
  • note that $\Leftrightarrow$ $\Rightarrow$

Some definitions for functions

for $f:X\to Y$
  • terms, map and function, exterchangeably used
  • $X$ and $Y$, called domain of $f$ and codomain of $f$ respectively
  • $\set{f(x)}{x\in X}$, called range of $f$
  • for $Z\subset Y$, $f^{-1}(Z) = \set{x\in X}{f(x)\in Z}\subset X$, called preimage or inverse image of $Z$ under $f$
  • for $y\in Y$, $f^{-1}(\{y\})$, called fiber of $f$ over $y$
  • $f$, called injective or injection or one-to-one if $\left( \forall x\neq v \in X \right) \left( f(x) \neq f(v) \right)$
  • $f$, called surjective or surjection or onto if $\left( \forall x \in X \right) \left( \exists y in Y \right) (y=f(x))$
  • $f$, called bijective or bijection if $f$ is both injective and surjective, in which case, $X$ and $Y$, said to be one-to-one correspondece or bijective correspondece
  • $g:Y\to X$, called left inverse if $g\circ f$ is identity function
  • $h:Y\to X$, called right inverse if $f\circ h$ is identity function

Some properties of functions

for $f:X\to Y$
  • $f$ is injective if and only if $f$ has left inverse
  • $f$ is surjective if and only if $f$ has right inverse
  • hence, $f$ is bijective if and only if $f$ has both left and right inverse because if $g$ and $h$ are left and right inverses respectively, $g = g \circ (f\circ h) = (g\circ f)\circ h = h$
  • if $|X|=|Y|<\infty$, $f$ is injective if and only if $f$ is surjective if and only if $f$ is bijective

Countability of sets

  • set $A$ is countable if range of some function whose domain is $\naturals$
  • $\naturals$, $\integers$, $\rationals$: countable
  • $\reals$: not countable

Limit sets

  • for sequence, $\seq{A_n}$, of subsets of $X$
    • limit superior or limsup of \seq{A_n}, defined by $$ \limsup \seq{A_n} = \bigcap_{n=1}^\infty \bigcup_{m=n}^\infty A_m $$
    • limit inferior or liminf of \seq{A_n}, defined by $$ \liminf \seq{A_n} = \bigcup_{n=1}^\infty \bigcap_{m=n}^\infty A_m $$
  • always $$ \liminf \seq{A_n} \subset \limsup \seq{A_n} $$
  • when $\liminf \seq{A_n} = \limsup \seq{A_n}$, sequence, $\seq{A_n}$, said to converge to it, denote $$ \lim \seq{A_n} = \liminf \seq{A_n} = \limsup \seq{A_n} = A $$

Algebras of sets

  • collection $\alg$ of subsets of $X$ called algebra or Boolean algebra if $$ (\forall A, B \in \alg) (A\cup B\in\alg) \mbox{ and } (\forall A \in \alg) (\compl{A}\in\alg) $$
    • $(\forall A_1, \ldots, A_n \in \alg)(\cup_{i=1}^n A_i \in \alg)$
    • $(\forall A_1, \ldots, A_n \in \alg)(\cap_{i=1}^n A_i \in \alg)$
  • algebra $\alg$ called $\sigma$-algebra or Borel field if
    • every union of a countable collection of sets in $\alg$ is in $\alg$, i.e., $$ (\forall \seq{A_i})(\cup_{i=1}^\infty A_i \in \alg) $$
  • given sequence of sets in algebra $\alg$, $\seq{A_i}$, exists disjoint sequence, $\seq{B_i}$ such that $$ B_i \subset A_i \mbox{ and } \bigcup_{i=1}^\infty B_i = \bigcup_{i=1}^\infty A_i $$

Algebras generated by subsets

  • algebra generated by collection of subsets of $X$, $\coll$, can be found by $$ \alg = \bigcap \set{\algk{B}}{\algk{B} \in \collF} $$ where $\collF$ is family of all algebras containing $\coll$
    • smallest algebra $\alg$ containing $\coll$, i.e., $$ (\forall \algk{B} \in \collF)(\alg \subset \algk{B}) $$
  • $\sigma$-algebra generated by collection of subsets of $X$, $\coll$, can be found by $$ \alg= \bigcap \set{\algk{B}}{\algk{B} \in \collG} $$ where $\collG$ is family of all $\sigma$-algebras containing $\coll$
    • smallest $\sigma$-algebra $\alg$ containing $\coll$, i.e., $$ (\forall \algk{B} \in \collG)(\alg \subset \algk{B}) $$

Relation

  • $x$ said to stand in relation $\rel$ to $y$, denoted by $\relxy{x}{y}$
  • $\rel$ said to be relation on $X$ if $\relxy{x}{y}$ $\Rightarrow$ $x\in X$ and $y\in X$
  • $\rel$ is
    • transitive if $\relxy{x}{y}$ and $\relxy{y}{z}$ $\Rightarrow$ $\relxy{x}{z}$
    • symmetric if $\relxy{x}{y} = \relxy{y}{x}$
    • reflexive if $\relxy{x}{x}$
    • antisymmetric if $\relxy{x}{y}$ and $\relxy{y}{x}$ $\Rightarrow$ $x=y$
  • $\rel$ is
    • equivalence relation if transitive, symmetric, and reflexive, e.g., modulo
    • partial ordering if transitive and antisymmetric, e.g., “$\subset$''
    • linear (or simple) ordering if transitive, antisymmetric, and $\relxy{x}{y}$ or $\relxy{y}{x}$ for all $x,y\in X$
      • e.g., “$\geq$'' linearly orders $\reals$ while “$\subset$'' does not $\powerset(X)$

Ordering

  • given partial order, $\prec$, $a$ is
    • a first/smallest/least element if $x \neq a \Rightarrow a\prec x$
    • a last/largest/greatest element if $x \neq a \Rightarrow x\prec a$
    • a minimal element if $x \neq a \Rightarrow x \not\prec a$
    • a maximal element if $x \neq a \Rightarrow a \not\prec x$
  • partial ordering $\prec$ is
    • strict partial ordering if $x\not\prec x$
    • reflexive partial ordering if $x\prec x$
  • strict linear ordering $<$ is
    • well ordering for $X$ if every nonempty set contains a first element

Axiom of choice and equivalent principles

given a collection of nonempty sets, $\coll$, there exists $f:\coll\ \to \cup_{A\in\coll} A$ such that $$ \left( \forall A\in\coll\ \right) \left( f(A) \in A \right) $$
  • also called multiplicative axiom - preferred to be called to axiom of choice by Bertrand Russell for reason writte
  • no problem when $\coll$ is finite
  • need axiom of choice when $\coll$ is not finite
for particial ordering $\prec$ on $X$, exists a maximal linearly ordered subset $S\subset X$, i.e., $S$ is linearity ordered by $\prec$ and if $S\subset T\subset X$ and $T$ is linearly ordered by $\prec$, $S=T$
every set $X$ can be well ordered, i.e., there is a relation $<$ that well orders $X$
  • note that $\Leftrightarrow$ $\Leftrightarrow$

Infinite direct product

for collection of sets, $\seq{X_\lambda}$, with index set, $\Lambda$, $$ \bigtimes_{\lambda\in\Lambda} X_\lambda $$ called direct product
  • for $z=\seq{x_\lambda}\in\bigtimes X_\lambda$, $x_\lambda$ called $\lambda$-th coordinate of $z$
  • if one of $X_\lambda$ is empty, $\bigtimes X_\lambda$ is empty
  • axiom of choice is equivalent to converse, i.e., if none of $X_\lambda$ is empty, $\bigtimes X_\lambda$ is not empty if one of $X_\lambda$ is empty, $\bigtimes X_\lambda$ is empty
  • this is why Bertrand Russell prefers multiplicative axiom to axiom of choice for name of axiom ()

Real Number System

Field axioms

  • field axioms - for every $x,y,z\in\field$
    • $(x+y)+z= x+(y+z)$ - additive associativity
    • $(\exists 0\in\field)(\forall x\in\field)(x+0=x)$ - additive identity
    • $(\forall x\in\field)(\exists w\in\field)(x+w=0)$ - additive inverse
    • $x+y= y+x$ - additive commutativity
    • $(xy)z= x(yz)$ - multiplicative associativity
    • $(\exists 1\neq0\in\field)(\forall x\in\field)(x\cdot 1=x)$ - multiplicative identity
    • $(\forall x\neq0\in\field)(\exists w\in\field)(xw=1)$ - multiplicative inverse
    • $x(y+z) = xy + xz$ - distributivity
    • $xy= yx$ - multiplicative commutativity
  • system (set with $+$ and $\cdot$) satisfying axiom of field called field
    • e.g., field of module $p$ where $p$ is prime, $\primefield{p}$

Axioms of order

  • axioms of order - subset, $\field_{++}\subset \field$, of positive (real) numbers satisfies
    • $x,y\in \field_{++} \Rightarrow x+y\in \field_{++}$
    • $x,y\in \field_{++} \Rightarrow xy\in \field_{++}$
    • $x\in \field_{++} \Rightarrow -x\not\in \field_{++}$
    • $x\in \field \Rightarrow x=0\lor x\in \field_{++} \lor -x \in \field_{++}$
  • system satisfying field axioms & axioms of order called ordered field
    • e.g., set of real numbers ($\reals$), set of rational numbers ($\rationals$)

Axiom of completeness

  • completeness axiom
    • every nonempty set $S$ of real numbers which has an upper bound has a least upper bound, i.e., $$ \set{l}{(\forall x\in S)(l\leq x)} $$ has least element.
    • use $\inf S$ and $\sup S$ for least and greatest element (when exist)
  • ordered field that is complete is complete ordered field
    • e.g., $\reals$ (with $+$ and $\cdot$)
  • axiom of Archimedes
    • given any $x\in\reals$, there is an integer $n$ such that $x<n$
  • corollary
    • given any $x<y \in \reals$, exists $r\in\rationals$ such tat $x < r < y$

Sequences of $\reals$

  • sequence of $\reals$ denoted by $\seq{x_i}_{i=1}^\infty$ or $\seq{x_i}$
    • mapping from $\naturals$ to $\reals$
  • limit of $\seq{x_n}$ denoted by $\lim_{n\to\infty} x_n$ or $\lim x_n$ - defined by $a\in\reals$ $$ (\forall \epsilon>0)(\exists N\in\naturals) (n \geq N \Rightarrow |x_n-a|<\epsilon) $$
    • $\lim x_n$ unique if exists
  • $\seq{x_n}$ called Cauchy sequence if $$ (\forall \epsilon>0)(\exists N\in\naturals) (n,m \geq N \Rightarrow |x_n-x_m|<\epsilon) $$
  • Cauchy criterion - characterizing complete metric space (including $\reals$)
    • sequence converges if and only if Cauchy sequence

Other limits

  • cluster point of $\seq{x_n}$ - defined by $c\in\reals$ $$ (\forall \epsilon>0, N\in\naturals)(\exists n>N)(|x_n-c|<\epsilon) $$
  • limit superior or limsup of $\seq{x_n}$ $$ \limsup x_n = \inf_n \sup_{k>n} x_k $$
  • limit inferior or liminf of $\seq{x_n}$ $$ \liminf x_n = \sup_n \inf_{k>n} x_k $$
  • $\liminf x_n \leq \limsup x_n$
  • $\seq{x_n}$ converges if and only if $\liminf x_n = \limsup x_n$ (=$\lim x_n$)

Open and closed sets

  • $O$ called open if $$ (\forall x\in O)(\exists \delta>0)(y\in\reals)(|y-x|<\delta\Rightarrow y\in O) $$
    • intersection of finite collection of open sets is open
    • union of any collection of open sets is open
  • $\closure{E}$ called closure of $E$ if $$ (\forall x \in \closure{E} \ \&\ \delta>0)(\exists y\in E)(|x-y|<\delta) $$
  • $F$ called closed if $$ F = \closure{F} $$
    • union of finite collection of closed sets is closed
    • intersection of any collection of closed sets is closed

Open and closed sets - facts

  • every open set is union of countable collection of disjoint open intervals
  • (Lindelöf) any collection $\coll$ of open sets has a countable subcollection $\seq{O_i}$ such that $$ \bigcup_{O\in\coll} O = \bigcup_{i} O_i $$
    • equivalently, any collection $\collk{F}$ of closed sets has a countable subcollection $\seq{F_i}$ such that $$ \bigcap_{O\in\collk{F}} F = \bigcap_{i} F_i $$

Covering and Heine-Borel theorem

  • collection $\coll$ of sets called covering of $A$ if $$ A \subset \bigcup_{O\in\coll} O $$
    • $\coll$ said to cover $A$
    • $\coll$ called open covering if every $O\in\coll$ is open
    • $\coll$ called finite covering if $\coll$ is finite
  • Heine-Borel theorem\index{Heine-Borel theorem}\index{Heine, Heinrich Eduard!Heine-Borel theorem}\index{Borel, Félix Édouard Justin Émile!Heine-Borel theorem} - for any closed and bounded set, every open covering has finite subcovering
  • corollary
    • any collection $\coll$ of closed sets including at least one bounded set every finite subcollection of which has nonempty intersection has nonempty intersection.

Continuous functions

  • $f$ (with domain $D$) called continuous at $x$ if $$ (\forall\epsilon >0)(\exists \delta>0)(\forall y\in D)(|y-x|<\delta \Rightarrow |f(y)-f(x)|<\epsilon) $$
  • $f$ called continuous on $A\subset D$ if $f$ is continuous at every point in $A$
  • $f$ called uniformly continuous on $A\subset D$ if $$ (\forall\epsilon >0)(\exists \delta>0)(\forall x,y\in D)(|x-y|<\delta \Rightarrow |f(x)-f(y)|<\epsilon) $$

Continuous functions - facts

  • $f$ is continuous if and only if for every open set $O$ (in co-domain), $f^{-1}(O)$ is open
  • $f$ continuous on closed and bounded set is uniformly continuous
  • extreme value theorem - $f$ continuous on closed and bounded set, $F$, is bounded on $F$ and assumes its maximum and minimum on $F$ $$ (\exists x_1, x_2 \in F)(\forall x\in F)(f(x_1) \leq f(x) \leq f(x_2)) $$
  • intermediate value theorem - for $f$ continuous on $[a,b]$ with $f(a) \leq f(b)$, $$ (\forall d)(f(a) \leq d \leq f(b))(\exists c\in[a,b])(f(c) = d) $$

Borel sets and Borel $\sigma$-algebra

  • Borel set
    • any set that can be formed from open sets (or, equivalently, from closed sets) through the operations of countable union, countable intersection, and relative complement
  • Borel algebra or Borel $\sigma$-algebra
    • smallest $\sigma$-algebra containing all open sets
    • also
      • smallest $\sigma$-algebra containing all closed sets
      • smallest $\sigma$-algebra containing all open intervals (due to statement on page~)

Various Borel sets

  • countable union of closed sets (in $\reals$), called an $F_\sigma$ ($F$ for closed & $\sigma$ for sum)
    • thus, every countable set, every closed set, every open interval, every open sets, is an $F_\sigma$ (note $(a,b)=\bigcup_{n=1}^\infty [a+1/n,b-1/n]$)
    • countable union of sets in $F_\sigma$ again is an $F_\sigma$
  • countable intersection of open sets called a $G_\delta$ ($G$ for open & $\delta$ for durchschnitt - average in German)
    • complement of $F_\sigma$ is a $G_\delta$ and vice versa
  • $F_\sigma$ and $G_\delta$ are simple types of Borel sets
  • countable intersection of $F_\sigma$'s is $F_{\sigma\delta}$, countable union of $F_{\sigma\delta}$'s is $F_{\sigma\delta\sigma}$, countable intersection of $F_{\sigma\delta\sigma}$'s is $F_{\sigma\delta\sigma\delta}$, etc., & likewise for $G_{\delta \sigma \ldots}$
  • below are all classes of Borel sets, but not every Borel set belongs to one of these classes $$ F_{\sigma}, F_{\sigma\delta}, F_{\sigma\delta\sigma}, F_{\sigma\delta\sigma\delta}, \ldots, G_{\delta}, G_{\delta\sigma}, G_{\delta\sigma\delta}, G_{\delta\sigma\delta\sigma}, \ldots, $$

Lebesgue Measure

Riemann integral

  • Riemann integral
    • partition induced by sequence $\seq{x_i}_{i=1}^n$ with $a=x_1<\cdots<x_n=b$
    • lower and upper sums
      • $L(f,\seq{x_i}) = \sum_{i=1}^{n-1} \inf_{x\in[x_i,x_{i+1}]} f(x) (x_{i+1}-x_{i})$
      • $U(f,\seq{x_i}) = \sum_{i=1}^{n-1} \sup_{x\in[x_i,x_{i+1}]} f(x) (x_{i+1}-x_{i})$
    • always holds: $L(f,\seq{x_i}) \leq U(f,\seq{y_i})$, hence $$ \sup_{\seq{x_i}} L(f,\seq{x_i}) \leq \inf_{\seq{x_i}} U(f,\seq{x_i}) $$
    • Riemann integrable if $$ \sup_{\seq{x_i}} L(f,\seq{x_i}) = \inf_{\seq{x_i}} U(f,\seq{x_i}) $$
  • every continuous function is Riemann integrable

Motivation - want measure better than Riemann integrable

  • consider indicator (or characteristic) function $\chi_\rationals:[0,1] \to [0,1]$ $$ \chi_\rationals(x) = \left\{\begin{array}{ll} 1 &\mbox{if } x \in \rationals \\ 0 &\mbox{if } x \not\in \rationals \end{array}\right. $$
  • not Riemann integrable: $\sup_{\seq{x_i}} L(f,\seq{x_i}) = 0 \neq 1 = \inf_{\seq{x_i}} U(f,\seq{x_i})$
  • however, irrational numbers infinitely more than rational numbers, hence
    • want to have some integral $\int$ such that, e.g., $$ \int_{[0,1]} \chi_\rationals(x) dx = 0 \mbox{ and } \int_{[0,1]} (1-\chi_\rationals(x)) dx = 1 $$

Properties of desirable measure

  • want some measure $\mu:\subsetset{M}\to\preals=\set{x\in\reals}{x\geq0}$
    • defined for every subset of $\reals$, i.e., $\subsetset{M} = \powerset(\reals)$
    • equals to length for open interval $$ \mu[b,a] = b-a $$
    • countable additivity: for disjoint $\seq{E_i}_{i=1}^\infty$ $$ \mu(\cup E_i) = \sum \mu(E_i) $$
    • translation invariant $$ \mu(E+x) = \mu(E) \mbox{ for } x\in\reals $$
  • no such measure exists
  • not known whether measure with first three properties exists
  • want to find translation invariant countably additive measure
    • hence, give up on first property

Race won by Henri Lebesgue in 1902!

  • mathematicians in 19th century struggle to solve this problem
  • race won by French mathematician, Henri Léon Lebesgue in 1902!
  • Lebesgue integral covers much wider range of functions
    • indeed, $\chi_\rationals$ is Lebesgue integrable $$ \int_{[0,1]} \chi_\rationals(x) dx = 0 \mbox{ and } \int_{[0,1]} (1-\chi_\rationals(x)) dx = 1 $$

Outer measure

  • for $E\subset\reals$, define outer measure $\mu^\ast:\powerset(\reals)\to\preals$ $$ \mu^\ast E = \inf_{\seq{I_i}} \left\{\left.\sum l(I_i) \right| E\subset \cup I_i\right\} $$ where $I_i=(a_i,b_i)$ and $l(I_i) = b_i-a_i$
  • outer measure of open interval is length $$ \mu^\ast(a_i,b_i) = b_i-a_i $$
  • countable subadditivity $$ \mu^\ast\left(\cup E_i\right) \leq \sum \mu^\ast E_i $$
  • corollaries
    • $\mu^\ast E = 0$ if $E$ is countable
    • $[0,1]$ not countable

Measurable sets

  • $E\subset\reals$ called measurable if for every $A\subset\reals$ $$ \mu^\ast A = \mu^\ast (E\cup A) + \mu^\ast (\compl{E}\cup {A}) $$
  • $\mu^\ast E =0$, then $E$ measurable
  • every open interval $(a,b)$ with $a\geq -\infty$ and $b\leq \infty$ is measurable
  • disjoint countable union of measurable sets is measurable, i.e., $\cup E_i$ is measurable
  • collection of measurable sets is $\sigma$-algebra

Borel algebra is measurable

  • note
    • every open set is disjoint countable union of open intervals (page~)
    • disjoint countable union of measurable sets is measurable (page~)
    • open intervals are measurable (page~)
  • hence, every open set is measurable
  • also
    • collection of measurable sets is $\sigma$-algebra (page~)
    • every open set is Borel set and Borel sets are $\sigma$-algebra (page~)
  • hence, Borel sets are measurable
  • specifically, Borel algebra (smallest $\sigma$-algebra containing all open sets) is measurable

Lebesgue measure

  • restriction of $\mu^\ast$ in collection $\subsetset{M}$ of measurable sets called Lebesgue measure $$ \mu:\subsetset{M}\to\preals $$
  • countable subadditivity - for $\seq{E_n}$ $$ \mu (\cup E_n) \leq \sum \mu E_n $$
  • countable additivity - for disjoint $\seq{E_n}$ $$ \mu (\cup E_n) = \sum \mu E_n $$
  • for dcreasing sequence of measurable sets, $\seq{E_n}$, i.e., $(\forall n\in\naturals)(E_{n+1} \subset E_n)$ $$ \mu\left( \bigcap E_n \right) = \lim \mu E_n $$

(Lebesgue) measurable sets are nice ones!

  • following statements are equivalent $$ \begin{eqnarray*} &-& E \mbox{ is measurable} \\ &-& (\forall \epsilon >0) (\exists \mbox{ open } O\supset E) (\mu^\ast(O\sim E)<\epsilon) \\ &-& (\forall \epsilon >0) (\exists \mbox{ closed } F\subset E) (\mu^\ast(E\sim F)<\epsilon) \\ &-& (\exists G_\delta) (G_\delta \supset E) (\mu^\ast(G_\delta\sim E)<\epsilon) \\ &-& (\exists F_\sigma) (F_\sigma \subset E) (\mu^\ast(E\sim F_\sigma)<\epsilon) \end{eqnarray*} $$
  • if $\mu^\ast E$ is finite, above statements are equivalent to $$ (\forall \epsilon>0) \left(\exists U = \bigcup_{i=1}^n (a_i,b_i) \right) (\mu^\ast (U\Delta E) < \epsilon) $$

Lebesgue measure resolves problem in movitation

  • let $$ E_1 = \set{x\in[0,1]}{x\in\rationals},\ E_2 = \set{x\in[0,1]}{x\not\in\rationals} $$
  • $\mu^\ast E_1=0$ because $E_1$ is countable, hence measurable and $$ \mu E_1 = \mu^\ast E_1 = 0 $$
  • algebra implies $E_2 = [0, 1] \cap \compl{E_1}$ is measurable
  • countable additivity implies $\mu E_1 + \mu E_2 = \mu[0,1] = 1$, hence $$ \mu E_1 = 1 $$

Lebesgue Measurable Functions

Lebesgue measurable functions

  • for $f:X\to\reals\cup\{-\infty, \infty\}$, i.e., extended real-valued function, the followings are equivalent
    • for every $a\in\reals$, $\set{x\in{X}}{f(x) < a}$ is measurable
    • for every $a\in\reals$, $\set{x\in{X}}{f(x) \leq a}$ is measurable
    • for every $a\in\reals$, $\set{x\in{X}}{f(x) > a}$ is measurable
    • for every $a\in\reals$, $\set{x\in{X}}{f(x) \geq a}$ is measurable
  • if so,
    • for every $a\in\reals\cup\{-\infty, \infty\}$, $\set{x\in{X}}{f(x) = a}$ is measurable
  • extended real-valued function, $f$, called (Lebesgue) measurable function if
    • domain is measurable
    • any one of above four statements holds

Properties of Lebesgue measurable functions

  • for real-valued measurable functions, $f$ and $g$, and $c\in\reals$
    • $f+c$, $cf$, $f+g$, $fg$ are measurable
  • for every extended real-valued measurable function sequence, $\seq{f_n}$
    • $\sup f_n$, $\limsup f_n$ are measurable
    • hence, $\inf f_n$, $\liminf f_n$ are measurable
    • thus, if $\lim f_n$ exists, it is measurable

Almost everywhere - a.e.

  • statement, $P(x)$, called almost everywhere or a.e. if $$ \mu \set{x}{\sim P(x)} = 0 $$
    • e.g., $f$ said to be equal to $g$ a.e. if $\mu\set{x}{f(x)\neq g(x)}=0$
    • e.g., $\seq{f_n}$ said to converge to $f$ a.e. if $$ (\exists E \mbox{ with } \mu E=0)(\forall x \not\in E)(\lim f_n (x) = f(x)) $$
  • facts
    • if $f$ is measurable and $f=g$ i.e., then $g$ is measurable
    • if measurable extended real-valued $f$ defined on $[a,b]$ with $f(x) \in\reals$ a.e., then for every $\epsilon>0$, exist step function $g$ and continuous function $h$ such that $$ \mu\set{x}{|f-g| \geq \epsilon} < \epsilon,\ \mu\set{x}{|f-h| \geq \epsilon} < \epsilon $$

Characteristic \& simple functions

  • for any $A\subset\reals$, $\chi_A$ called characteristic function if $$ \chi_A(x) = \left\{\begin{array}{ll} 1 & x\in A\\ 0 & x\not\in A\\ \end{array}\right. $$
    • $\chi_A$ is measurable if and only if $A$ is measurable
  • measurable $\varphi$ called simple if for some distinct $\seq{a_i}_{i=1}^n$ $$ \varphi(x) = \sum_{i=1}^n a_i \chi_{A_i}(x) $$ where $A_i = \set{x}{x= a_i}$

Littlewood's three principles

  • let $M(E)$ with measurable set, $E$, denote set of measurable functions defined on $E$
  • every (measurable) set is nearly finite union of intervals, e.g.,
    • $E$ is measurable if and only if $$ (\forall \epsilon>0) (\exists \{I_i: \mbox{open\ interval}\}_{i=1}^n) (\mu^\ast(E \Delta (\cup I_n)) < \epsilon) $$
  • every (measurable) function is nearly continuous, e.g.,
    • (Lusin's theorem) $$ (\forall f \in M[a,b])(\forall \epsilon >0)(\exists g \in C[a,b]) (\mu\set{x}{f(x)\neq g(x)}< \epsilon) $$
  • every convergent (measurable) function sequence is nearly uniformly convergent, e.g., $$ \begin{eqnarray*} &=& (\forall \mbox{ measurable }\seq{f_n} \mbox{ converging to } f \mbox { a.e. on } E \mbox{ with } \mu E<\infty) \\ && (\forall \epsilon>0 \mbox{ and } \delta>0) (\exists A\subset E \mbox{ with } \mu(A)<\delta \mbox{ and } N\in\naturals) \\ && (\forall n > N, x\in E\sim A)(|f_n(x)-f(x)|<\epsilon) \end{eqnarray*} $$

Egoroff's theorem

  • Egoroff theorem - provides stronger version of third statement on page~ $$ \begin{eqnarray*} &=& (\forall \mbox{ measurable }\seq{f_n} \mbox{ converging to } f \mbox { a.e. on } E \mbox{ with } \mu E<\infty) \\ && (\exists A\subset E \mbox{ with } \mu(A)<\epsilon) (f_n \mbox{ uniformly converges to } f \mbox{ on } E\sim A ) \end{eqnarray*} $$

Lebesgue Integral

Integral of simple functions

  • canonical representation of simple function $$ \varphi(x) = \sum_{i=1}^n a_i \chi_{A_i}(x) $$ where $a_i$ are distinct $A_i=\{x|\varphi(x)=a_i\}$ - note $A_i$ are disjoint
  • when $\mu\set{x}{\varphi(x)\neq0}< \infty$ and $\varphi = \sum_{i=1}^n a_i \chi_{A_i}$ is canonical representation, define integral of $\varphi$ by $$ \int \varphi = \int \varphi (x) dx= \sum_{i=1}^n a_i \mu A_i $$
  • when $E$ is measurable, define $$ \int_E \varphi = \int \varphi \chi_E $$

Properties of integral of simple functions

  • for simple functions $\varphi$ and $\psi$ that vanish out of finite measure set, i.e., $\mu\set{x}{\varphi(x)\neq0}<\infty$, $\mu\set{x}{\psi(x)\neq0}<\infty$, and for every $a,b\in\reals$ $$ \int (a\varphi + b\psi) = a \int\varphi + b \int\psi $$
  • thus, even for simple function, $\varphi = \sum_{i=1}^n a_i \chi_{A_i}$ that vanishes out of finite measure set, not necessarily in canonical representation, $$ \int \varphi = \sum_{i=1}^n a_i \mu A_i $$
  • if $\varphi \geq \psi$ a.e. $$ \int \varphi \geq \int \psi $$

Lebesgue integral of bounded functions

  • for bounded function, $f$, and finite measurable set, $E$, $$ \sup_{\varphi:\ \mathrm{simple},\ \varphi \leq f} \int_E \varphi \leq \inf_{\psi:\ \mathrm{simple},\ f \leq \psi} \int_E \psi $$
    • if $f$ is defined on $E$, $f$ is measurable function if and only if $$ \sup_{\varphi:\ \mathrm{simple},\ \varphi \leq f} \int_E \varphi = \inf_{\psi:\ \mathrm{simple},\ f \leq \psi} \int_E \psi $$
  • for bounded measurable function, $f$, defined on measurable set, $E$, with $\mu E < \infty$, define (Lebesgue) integral of $f$ over $E$ $$ \int_E f(x) dx = \sup_{\varphi:\ \mathrm{simple},\ \varphi \leq f} \int_E \varphi = \inf_{\psi:\ \mathrm{simple},\ f \leq \psi} \int_E \psi $$

Properties of Lebesgue integral of bounded functions

  • for bounded measurable functions, $f$ and $g$, defined on $E$ with finite measure
    • for every $a,b\in\reals$ $$ \int_E (af+bg) = a \int_E f + b\int_E g $$
    • if $f\leq g$ a.e. $$ \int_E f \leq \int_E g $$
    • for disjoint measurable sets, $A,B\subset E$, $$ \int_{A\cup B} f = \int_A f + \int_B f $$
  • hence, $$ \left|\int_E f \right| \leq \int_E |f| \mbox{ \& } f=g \mbox{ a.e. } \Rightarrow \int_E f = \int_E g $$

Lebesgue integral of bounded functions over finite interval

  • if bounded function, $f$, defined on $[a,b]$ is Riemann integrable, then $f$ is measurable and $$ \int_{[a,b]} f = R \int_a^b f(x) dx $$ where $R\int$ denotes Riemann integral
  • bounded function, $f$, defined on $[a,b]$ is Riemann integrable if and only if set of points where $f$ is discontinuous has measure zero
  • for sequence of measurable functions, $\seq{f_n}$, defined on measurable $E$ with finite measure, and $M>0$, if $|f_n|<M$ for every $n$ and $f(x) = \lim f_n(x)$ for every $x\in E$ $$ \int_E f = \lim \int_E f_n $$

Lebesgue integral of nonnegative functions

  • for nonnegative measurable function, $f$, defined on measurable set, $E$, define $$ \int_E f = \sup_{h:\ \mathrm{bounded\ measurable\ function},\ \mu\set{x}{h(x)\neq0}<\infty,\ h\leq f} \int_E h $$
  • for nonnegative measurable functions, $f$ and $g$
    • for every $a,b\geq0$ $$ \int_E (af + bg) = a\int_E f + b\int_E g $$
    • if $f\geq g$ a.e. $$ \int_E f \leq \int_E g $$
  • thus,
    • for every $c>0$ $$ \int_E cf = a\int_E f $$

Fatou's lemma and monotone convergence theorem for Lebesgue integral

  • Fatou's lemma - for nonnegative measurable function sequence, $\seq{f_n}$, with $\lim f_n = f$ a.e. on measurable set, $E$ $$ \int_E f \leq \liminf \int_E f_n $$
    • note $\lim f_n$ is measurable (page~), hence $f$ is measurable (page~)
  • monotone convergence theorem - for nonnegative increasing measurable function sequence, $\seq{f_n}$, with $\lim f_n = f$ a.e. on measurable set, $E$ $$ \int_E f = \lim \int_E f_n $$
  • for nonnegative measure function, $f$, and sequence of disjoint measurable sets, $\seq{E_i}$, $$ \int_{\cup E_i} f = \sum \int_{E_i} f $$

Lebesgue integrability of nonnegative functions

  • nonnegative measurable function, $f$, said to be integrable over measurable set, $E$, if $$ \int_E f < \infty $$
  • for nonnegative measurable functions, $f$ and $g$, if $f$ is integrable on measurable set, $E$, and $g\leq f$ a.e. on $E$, then $g$ is integrable and $$ \int_E (f-g) = \int_E f - \int_E g $$
  • for nonnegative integrable function, $f$, defined on measurable set, $E$, and every $\epsilon$, exists $\delta >0$ such that for every measurable set $A\subset E$ with $\mu A< \epsilon$ (then $f$ is integrable on $A$, of course), $$ \int_A f < \epsilon $$

Lebesgue integral

  • for (any) function, $f$, define $f^+$ and $f^-$ such that for every $x$ $$ \begin{eqnarray*} f^+(x) &=& \max\{f(x), 0\} \\ f^-(x) &=& \max\{-f(x), 0\} \end{eqnarray*} $$
  • note $f = f^+ - f^-,\ |f| = f^+ + f^-,\ f^- = (-f)^+$
  • measurable function, $f$, said to be (Lebesgue) integrable over measurable set, $E$, if (nonnegative measurable) functions, $f^+$ and $f^-$, are integrable $$ \int_E f = \int_E f^+ - \int_E f^- $$

Properties of Lebesgue integral

  • for $f$ and $g$ integrable on measure set, $E$, and $a,b\in\reals$
    • $af+bg$ is integral and $$ \int_E (af+bg) = a \int_E f + b\int_E g $$
    • if $f\geq g$ a.e. on $E$, $$ \int_E f \geq \int_E g $$
    • for disjoint measurable sets, $A,B\subset E$ $$ \int_{A\cup B} f = \int_A f + \int_B g $$

Lebesgue convergence theorem (for Lebesgue integral)

  • Lebesgue convergence theorem - for measurable $g$ integrable on measurable set, $E$, and measurable sequence $\seq{f_n}$ converging to $f$ with $|f_n|<g$ a.e. on $E$, ($f$ is measurable (page~), every $f_n$ is integrable (page~)) and $$ \int_E f = \lim \int_E f_n $$

Generalization of Lebesgue convergence theorem (for Lebesgue integral)

  • generalization of Lebesgue convergence theorem - for sequence of functions, $\seq{g_n}$, integrable on measurable set, $E$, converging to integrable $g$ a.e. on $E$, and sequence of measurable functions, $\seq{f_n}$, converging to $f$ a.e. on $E$ with $|f_n|<g_n$ a.e. on $E$, if $$ \int_E g = \lim \int_E g_n $$ then ($f$ is measurable (page~), every $f_n$ is integrable (page~)) and $$ \int_E f = \lim \int_E f_n $$

Comments on convergence theorems

  • Fatou's lemma (page~), monotone convergence theorem (page~), Lebesgue convergence theorem (page~), all state that under suitable conditions, we say something about $$ \int \lim f_n $$ in terms of $$ \lim \int f_n $$
  • Fatou's lemma requires weaker condition than Lebesgue convergence theorem, i.e., only requires “bounded below'' whereas Lebesgue converges theorem also requires “bounded above'' $$ \int \lim f_n \leq \liminf \int f_n $$
  • monotone convergence theorem is somewhat between the two;
    • advantage - applicable even when $f$ not integrable
    • Fatou's lemma and monotone converges theorem very clsoe in sense that can be derived from each other using only facts of positivity and linearity of integral

Convergence in measure

  • $\seq{f_n}$ of measurable functions said to converge $f$ in measure if $$ (\forall \epsilon>0) (\exists N\in\naturals) (\forall n > N) (\mu\set{x}{|f_n-f|>\epsilon} < \epsilon) $$
  • thus, third statement on page~ implies $$ (\forall \seq{f_n} \mbox{ converging to } f \mbox { a.e. on } E \mbox{ with } \mu E<\infty) (f_n \mbox{ converge in measure to }f) $$
  • however, the converse is not true, i.e., exists $\seq{f_n}$ converging in measure to $f$ that does not converge to $f$ a.e.
    • e.g., XXX
  • Fatou's lemma (page~), monotone convergence theorem (page~), Lebesgue convergence theorem (page~) remain valid! even when “convergence a.e.'' replaced by “convergence in measure''

Conditions for convergence in measure

$$ \left( \forall \seq{f_n} \mbox{ converging in measure to } f \right) \left( \exists \mbox{ subsequence }\seq{f_{n_k}} \mbox{ converging a.e. to } f \right) $$
for sequence $\seq{f_n}$ measurable on $E$ with $\mu E<\infty$ $$ \begin{eqnarray*} &=&\seq{f_n} \mbox{ converging in measure to } f \\ &\Leftrightarrow& \left( \forall \mbox{ subsequence }\seq{f_{n_k}} \right) \left( \exists \mbox{ its subsequence }\seq{f_{n_{k_l}}} \mbox{ converging a.e. to } f \right) \end{eqnarray*} $$

Updated: