Math Stories
posted: 01-Aug-2025 & updated: 05-Aug-2025
NotebookLM Podcast
- 14:34 \(% \newcommand{\algA}{\algk{A}} \newcommand{\algC}{\algk{C}} \newcommand{\bigtimes}{\times} \newcommand{\compl}[1]{\tilde{#1}} \newcommand{\complexes}{\mathbb{C}} \newcommand{\dom}{\mathop{\bf dom {}}} \newcommand{\ereals}{\reals\cup\{-\infty,\infty\}} \newcommand{\field}{\mathbb{F}} \newcommand{\integers}{\mathbb{Z}} \newcommand{\lbdseqk}[1]{\seqk{\lambda}{#1}} \newcommand{\meas}[3]{({#1}, {#2}, {#3})} \newcommand{\measu}[2]{({#1}, {#2})} \newcommand{\meast}[3]{\left({#1}, {#2}, {#3}\right)} \newcommand{\naturals}{\mathbb{N}} \newcommand{\nuseqk}[1]{\seqk{\nu}{#1}} \newcommand{\pair}[2]{\langle {#1}, {#2}\rangle} \newcommand{\rationals}{\mathbb{Q}} \newcommand{\reals}{\mathbb{R}} \newcommand{\seq}[1]{\left\langle{#1}\right\rangle} \newcommand{\powerset}{\mathcal{P}} \newcommand{\pprealk}[1]{\reals_{++}^{#1}} \newcommand{\ppreals}{\mathbb{R}_{++}} \newcommand{\prealk}[1]{\reals_{+}^{#1}} \newcommand{\preals}{\mathbb{R}_+} \newcommand{\tXJ}{\topos{X}{J}} % \newcommand{\relint}{\mathop{\bf relint {}}} \newcommand{\boundary}{\mathop{\bf bd {}}} \newcommand{\subsetset}[1]{\mathcal{#1}} \newcommand{\Tr}{\mathcal{\bf Tr}} \newcommand{\symset}[1]{\mathbf{S}^{#1}} \newcommand{\possemidefset}[1]{\mathbf{S}_+^{#1}} \newcommand{\posdefset}[1]{\mathbf{S}_{++}^{#1}} \newcommand{\ones}{\mathbf{1}} \newcommand{\Prob}{\mathop{\bf Prob {}}} \newcommand{\prob}[1]{\Prob\left\{#1\right\}} \newcommand{\Expect}{\mathop{\bf E {}}} \newcommand{\Var}{\mathop{\bf Var{}}} \newcommand{\Mod}[1]{\;(\text{mod}\;#1)} \newcommand{\ball}[2]{B(#1,#2)} \newcommand{\generates}[1]{\langle {#1} \rangle} \newcommand{\isomorph}{\approx} \newcommand{\isomorph}{\approx} \newcommand{\nullspace}{\mathcalfont{N}} \newcommand{\range}{\mathcalfont{R}} \newcommand{\diag}{\mathop{\bf diag {}}} \newcommand{\rank}{\mathop{\bf rank {}}} \newcommand{\Ker}{\mathop{\mathrm{Ker} {}}} \newcommand{\Map}{\mathop{\mathrm{Map} {}}} \newcommand{\End}{\mathop{\mathrm{End} {}}} \newcommand{\Img}{\mathop{\mathrm{Im} {}}} \newcommand{\Aut}{\mathop{\mathrm{Aut} {}}} \newcommand{\Gal}{\mathop{\mathrm{Gal} {}}} \newcommand{\Irr}{\mathop{\mathrm{Irr} {}}} \newcommand{\arginf}{\mathop{\mathrm{arginf}}} \newcommand{\argsup}{\mathop{\mathrm{argsup}}} \newcommand{\argmin}{\mathop{\mathrm{argmin}}} \newcommand{\ev}{\mathop{\mathrm{ev} {}}} \newcommand{\affinehull}{\mathop{\bf aff {}}} \newcommand{\cvxhull}{\mathop{\bf Conv {}}} \newcommand{\epi}{\mathop{\bf epi {}}} \newcommand{\injhomeo}{\hookrightarrow} \newcommand{\perm}[1]{\text{Perm}(#1)} \newcommand{\aut}[1]{\text{Aut}(#1)} \newcommand{\ideal}[1]{\mathfrak{#1}} \newcommand{\bigset}[2]{\left\{#1\left|{#2}\right.\right\}} \newcommand{\bigsetl}[2]{\left\{\left.{#1}\right|{#2}\right\}} \newcommand{\primefield}[1]{\field_{#1}} \newcommand{\dimext}[2]{[#1:{#2}]} \newcommand{\restrict}[2]{#1|{#2}} \newcommand{\algclosure}[1]{#1^\mathrm{a}} \newcommand{\finitefield}[2]{\field_{#1^{#2}}} \newcommand{\frobmap}[2]{\varphi_{#1,{#2}}} % %\newcommand{\algfontmode}{} % %\ifdefined\algfontmode %\newcommand\mathalgfont[1]{\mathcal{#1}} %\newcommand\mathcalfont[1]{\mathscr{#1}} %\else \newcommand\mathalgfont[1]{\mathscr{#1}} \newcommand\mathcalfont[1]{\mathcal{#1}} %\fi % %\def\DeltaSirDir{yes} %\newcommand\sdirletter[2]{\ifthenelse{\equal{\DeltaSirDir}{yes}}{\ensuremath{\Delta #1}}{\ensuremath{#2}}} \newcommand{\sdirletter}[2]{\Delta #1} \newcommand{\sdirlbd}{\sdirletter{\lambda}{\Delta \lambda}} \newcommand{\sdir}{\sdirletter{x}{v}} \newcommand{\seqk}[2]{#1^{(#2)}} \newcommand{\seqscr}[3]{\seq{#1}_{#2}^{#3}} \newcommand{\xseqk}[1]{\seqk{x}{#1}} \newcommand{\sdirk}[1]{\seqk{\sdir}{#1}} \newcommand{\sdiry}{\sdirletter{y}{\Delta y}} \newcommand{\slen}{t} \newcommand{\slenk}[1]{\seqk{\slen}{#1}} \newcommand{\ntsdir}{\sdir_\mathrm{nt}} \newcommand{\pdsdir}{\sdir_\mathrm{pd}} \newcommand{\sdirnu}{\sdirletter{\nu}{w}} \newcommand{\pdsdirnu}{\sdirnu_\mathrm{pd}} \newcommand{\pdsdiry}{\sdiry_\mathrm{pd}} \newcommand\pdsdirlbd{\sdirlbd_\mathrm{pd}} % \newcommand{\normal}{\mathcalfont{N}} % \newcommand{\algk}[1]{\mathalgfont{#1}} \newcommand{\collk}[1]{\mathcalfont{#1}} \newcommand{\classk}[1]{\collk{#1}} \newcommand{\indexedcol}[1]{\{#1\}} \newcommand{\rel}{\mathbf{R}} \newcommand{\relxy}[2]{#1\;\rel\;{#2}} \newcommand{\innerp}[2]{\langle{#1},{#2}\rangle} \newcommand{\innerpt}[2]{\left\langle{#1},{#2}\right\rangle} \newcommand{\closure}[1]{\overline{#1}} \newcommand{\support}{\mathbf{support}} \newcommand{\set}[2]{\{#1|#2\}} \newcommand{\metrics}[2]{\langle {#1}, {#2}\rangle} \newcommand{\interior}[1]{#1^\circ} \newcommand{\topol}[1]{\mathfrak{#1}} \newcommand{\topos}[2]{\langle {#1}, \topol{#2}\rangle} % topological space % \newcommand{\alg}{\algk{A}} \newcommand{\algB}{\algk{B}} \newcommand{\algF}{\algk{F}} \newcommand{\algR}{\algk{R}} \newcommand{\algX}{\algk{X}} \newcommand{\algY}{\algk{Y}} % \newcommand\coll{\collk{C}} \newcommand\collB{\collk{B}} \newcommand\collF{\collk{F}} \newcommand\collG{\collk{G}} \newcommand{\tJ}{\topol{J}} \newcommand{\tS}{\topol{S}} \newcommand\openconv{\collk{U}} % \newenvironment{my-matrix}[1]{\begin{bmatrix}}{\end{bmatrix}} \newcommand{\colvectwo}[2]{\begin{my-matrix}{c}{#1}\\{#2}\end{my-matrix}} \newcommand{\colvecthree}[3]{\begin{my-matrix}{c}{#1}\\{#2}\\{#3}\end{my-matrix}} \newcommand{\rowvecthree}[3]{\begin{bmatrix}{#1}&{#2}&{#3}\end{bmatrix}} \newcommand{\mattwotwo}[4]{\begin{bmatrix}{#1}&{#2}\\{#3}&{#4}\end{bmatrix}} % \newcommand\optfdk[2]{#1^\mathrm{#2}} \newcommand\tildeoptfdk[2]{\tilde{#1}^\mathrm{#2}} \newcommand\fobj{\optfdk{f}{obj}} \newcommand\fie{\optfdk{f}{ie}} \newcommand\feq{\optfdk{f}{eq}} \newcommand\tildefobj{\tildeoptfdk{f}{obj}} \newcommand\tildefie{\tildeoptfdk{f}{ie}} \newcommand\tildefeq{\tildeoptfdk{f}{eq}} \newcommand\xdomain{\mathcalfont{X}} \newcommand\xobj{\optfdk{\xdomain}{obj}} \newcommand\xie{\optfdk{\xdomain}{ie}} \newcommand\xeq{\optfdk{\xdomain}{eq}} \newcommand\optdomain{\mathcalfont{D}} \newcommand\optfeasset{\mathcalfont{F}} % \newcommand{\bigpropercone}{\mathcalfont{K}} % \newcommand{\prescript}[3]{\;^{#1}{#3}} % %\)
Math Stories
Fundamental Theorems
Fundamental theorem of arithmetic
Fundamental theorem of algebra
- the fundamental theorem of algebra, also called d'Alembert's theorem or the d'Alembert–Gauss theorem
- despite its name, not fundamental for modern algebra; named when algebra was synonymous with the theory of equations
Fundamental theorem of calculus
- first fundamental theorem of calculus - for continuous real-valued function $f:[a,b]\to\reals$, function $F:[a,b]\to\reals$ defined by $ F(x) = \int_a^x f(t) dt $ is uniformly continuous on $[a,b]$ and differentiable on open interval $(a,b)$ and $$ F'(x) = f(x) $$ for all $x\in(a,b)$, hence $F$ is antiderivative of $f$
- second fundamental theorem of calculus or Newton-Leibniz theorem - for real-valued function $f:[a,b]\to\reals$ and continuous function $F:[a,b]\to\reals$ which is antiderivative of $f$ in $(a,b)$, i.e. $ F'(x) = f(x) $, if $f$ is Riemann integrable on $[a,b]$, then $$ \int_a^b f(x) dx = F(b) - F(a) $$
Fundamental theorem of calculus for line integrals
- generalization of the second fundamental theorem of calculus of Fundamental theorem of calculus
Fundamental theorem of cyclic groups
Fundamental theorem of equivalence relations
Fundamental theorem of finite abelian groups
- numbers $k_1$, …, $k_u$ are powers of (not necessarily distinct) primes
- $k_1$ divides $k_2$, which divides $k_3$, and so on up to $k_u$
- also known as basis theorem for finite abelian groups
Fundamental theorem of finitely generated abelian groups
- Fundamental theorem of finitely generated abelian groups generalizes Fundamental theorem of finite abelian groups in two ways
- primary decomposition - every finitely generated abelian group is isomorphic to a direct sum of primary cyclic groups and infinite cyclic groups, i.e., every finitely generated abelian group $G$ is isomorphic to group of form $$ G = \integers^n \oplus \left(\integers/q_1 \integers\right) \oplus \cdots \oplus \left(\integers/q_t \integers\right) $$ where $n\geq0$ is rank, and numbers $q_1, \ldots, q_t$ are powers of (not necessarily distinct) prime numbers; in particular, $G$ is finite if and only if $n=0$, values of $n, q_1, \ldots, q_t$ are (up to rearranging indices) uniquely determined by $G$, i.e., exists one and only one way to represent $G$ as such decomposition
- invariant factor decomposition - can also write any finitely generated abelian group $G$ as direct sum of form $$ G = \integers^{n} \oplus \left(\integers /{k_{1}}\integers\right) \oplus \cdots \oplus \left(\integers /{k_{u}}\integers\right) $$ where $k_1$ divides $k_2$, which divides $k_3$ and so on up to $k_u$; again, rank $n$ and invariant factors $k_1, \ldots, k_u$ are uniquely determined by $G$ (here with a unique order); rank and sequence of invariant factors determine group up to isomorphism
Fundamental theorem for Galois theory
- map $H \mapsto K^H$ induces isomorphism between set of subgroups of $G(K/k)$ & set of intermediate fields
- subgroup, $H$, of $G(K/k)$, is normal if and only if $K^H/k$ is Galois
- for normal subgroup, $H$, $\sigma\mapsto \restrict{\sigma}{K^H}$ induces isomorphism between $G(K/k)/H$ and $G(K^H/k)$
Fundamental theorem on homeomorphisms
Fundamental theorem of ideal theory in number fields
Fundamental theorem of linear algebra
Fundamental theorem of linear programming
Fundamental theorem of symmetric polynomials
Duality
Dualities
-
duality
- “very pervasive and important concept in (modern) mathematics''
- “important general theme having manifestations in almost every area of mathematics''
-
dualities appear in many places in mathematics, e.g.
- dual of normed space is space of bounded linear functionals on the space (page~here)
- dual cones and dual norms are defined ( & )
- can define dual generalized inequalities using dual cones ()
- can find necessary and sufficient conditions for $K$-convexity using dual generalized inequalities ()
- duality can be observed even in fundamental theorem for Galois theory, i.e., $G(K/E) \leftrightarrow E$ & $H \leftrightarrow K^H$ ()
- exist dualities in continuous / discrete functions in time domain and continuous / discrete functions in frequency domain, i.e., as in Fourier Transformation
- However, never fascinated more than duality appearing in optimization, e.g.,