6 minute read

posted: 01-Aug-2025 & updated: 05-Aug-2025

NotebookLM Podcast

  • 14:34 \(% \newcommand{\algA}{\algk{A}} \newcommand{\algC}{\algk{C}} \newcommand{\bigtimes}{\times} \newcommand{\compl}[1]{\tilde{#1}} \newcommand{\complexes}{\mathbb{C}} \newcommand{\dom}{\mathop{\bf dom {}}} \newcommand{\ereals}{\reals\cup\{-\infty,\infty\}} \newcommand{\field}{\mathbb{F}} \newcommand{\integers}{\mathbb{Z}} \newcommand{\lbdseqk}[1]{\seqk{\lambda}{#1}} \newcommand{\meas}[3]{({#1}, {#2}, {#3})} \newcommand{\measu}[2]{({#1}, {#2})} \newcommand{\meast}[3]{\left({#1}, {#2}, {#3}\right)} \newcommand{\naturals}{\mathbb{N}} \newcommand{\nuseqk}[1]{\seqk{\nu}{#1}} \newcommand{\pair}[2]{\langle {#1}, {#2}\rangle} \newcommand{\rationals}{\mathbb{Q}} \newcommand{\reals}{\mathbb{R}} \newcommand{\seq}[1]{\left\langle{#1}\right\rangle} \newcommand{\powerset}{\mathcal{P}} \newcommand{\pprealk}[1]{\reals_{++}^{#1}} \newcommand{\ppreals}{\mathbb{R}_{++}} \newcommand{\prealk}[1]{\reals_{+}^{#1}} \newcommand{\preals}{\mathbb{R}_+} \newcommand{\tXJ}{\topos{X}{J}} % \newcommand{\relint}{\mathop{\bf relint {}}} \newcommand{\boundary}{\mathop{\bf bd {}}} \newcommand{\subsetset}[1]{\mathcal{#1}} \newcommand{\Tr}{\mathcal{\bf Tr}} \newcommand{\symset}[1]{\mathbf{S}^{#1}} \newcommand{\possemidefset}[1]{\mathbf{S}_+^{#1}} \newcommand{\posdefset}[1]{\mathbf{S}_{++}^{#1}} \newcommand{\ones}{\mathbf{1}} \newcommand{\Prob}{\mathop{\bf Prob {}}} \newcommand{\prob}[1]{\Prob\left\{#1\right\}} \newcommand{\Expect}{\mathop{\bf E {}}} \newcommand{\Var}{\mathop{\bf Var{}}} \newcommand{\Mod}[1]{\;(\text{mod}\;#1)} \newcommand{\ball}[2]{B(#1,#2)} \newcommand{\generates}[1]{\langle {#1} \rangle} \newcommand{\isomorph}{\approx} \newcommand{\isomorph}{\approx} \newcommand{\nullspace}{\mathcalfont{N}} \newcommand{\range}{\mathcalfont{R}} \newcommand{\diag}{\mathop{\bf diag {}}} \newcommand{\rank}{\mathop{\bf rank {}}} \newcommand{\Ker}{\mathop{\mathrm{Ker} {}}} \newcommand{\Map}{\mathop{\mathrm{Map} {}}} \newcommand{\End}{\mathop{\mathrm{End} {}}} \newcommand{\Img}{\mathop{\mathrm{Im} {}}} \newcommand{\Aut}{\mathop{\mathrm{Aut} {}}} \newcommand{\Gal}{\mathop{\mathrm{Gal} {}}} \newcommand{\Irr}{\mathop{\mathrm{Irr} {}}} \newcommand{\arginf}{\mathop{\mathrm{arginf}}} \newcommand{\argsup}{\mathop{\mathrm{argsup}}} \newcommand{\argmin}{\mathop{\mathrm{argmin}}} \newcommand{\ev}{\mathop{\mathrm{ev} {}}} \newcommand{\affinehull}{\mathop{\bf aff {}}} \newcommand{\cvxhull}{\mathop{\bf Conv {}}} \newcommand{\epi}{\mathop{\bf epi {}}} \newcommand{\injhomeo}{\hookrightarrow} \newcommand{\perm}[1]{\text{Perm}(#1)} \newcommand{\aut}[1]{\text{Aut}(#1)} \newcommand{\ideal}[1]{\mathfrak{#1}} \newcommand{\bigset}[2]{\left\{#1\left|{#2}\right.\right\}} \newcommand{\bigsetl}[2]{\left\{\left.{#1}\right|{#2}\right\}} \newcommand{\primefield}[1]{\field_{#1}} \newcommand{\dimext}[2]{[#1:{#2}]} \newcommand{\restrict}[2]{#1|{#2}} \newcommand{\algclosure}[1]{#1^\mathrm{a}} \newcommand{\finitefield}[2]{\field_{#1^{#2}}} \newcommand{\frobmap}[2]{\varphi_{#1,{#2}}} % %\newcommand{\algfontmode}{} % %\ifdefined\algfontmode %\newcommand\mathalgfont[1]{\mathcal{#1}} %\newcommand\mathcalfont[1]{\mathscr{#1}} %\else \newcommand\mathalgfont[1]{\mathscr{#1}} \newcommand\mathcalfont[1]{\mathcal{#1}} %\fi % %\def\DeltaSirDir{yes} %\newcommand\sdirletter[2]{\ifthenelse{\equal{\DeltaSirDir}{yes}}{\ensuremath{\Delta #1}}{\ensuremath{#2}}} \newcommand{\sdirletter}[2]{\Delta #1} \newcommand{\sdirlbd}{\sdirletter{\lambda}{\Delta \lambda}} \newcommand{\sdir}{\sdirletter{x}{v}} \newcommand{\seqk}[2]{#1^{(#2)}} \newcommand{\seqscr}[3]{\seq{#1}_{#2}^{#3}} \newcommand{\xseqk}[1]{\seqk{x}{#1}} \newcommand{\sdirk}[1]{\seqk{\sdir}{#1}} \newcommand{\sdiry}{\sdirletter{y}{\Delta y}} \newcommand{\slen}{t} \newcommand{\slenk}[1]{\seqk{\slen}{#1}} \newcommand{\ntsdir}{\sdir_\mathrm{nt}} \newcommand{\pdsdir}{\sdir_\mathrm{pd}} \newcommand{\sdirnu}{\sdirletter{\nu}{w}} \newcommand{\pdsdirnu}{\sdirnu_\mathrm{pd}} \newcommand{\pdsdiry}{\sdiry_\mathrm{pd}} \newcommand\pdsdirlbd{\sdirlbd_\mathrm{pd}} % \newcommand{\normal}{\mathcalfont{N}} % \newcommand{\algk}[1]{\mathalgfont{#1}} \newcommand{\collk}[1]{\mathcalfont{#1}} \newcommand{\classk}[1]{\collk{#1}} \newcommand{\indexedcol}[1]{\{#1\}} \newcommand{\rel}{\mathbf{R}} \newcommand{\relxy}[2]{#1\;\rel\;{#2}} \newcommand{\innerp}[2]{\langle{#1},{#2}\rangle} \newcommand{\innerpt}[2]{\left\langle{#1},{#2}\right\rangle} \newcommand{\closure}[1]{\overline{#1}} \newcommand{\support}{\mathbf{support}} \newcommand{\set}[2]{\{#1|#2\}} \newcommand{\metrics}[2]{\langle {#1}, {#2}\rangle} \newcommand{\interior}[1]{#1^\circ} \newcommand{\topol}[1]{\mathfrak{#1}} \newcommand{\topos}[2]{\langle {#1}, \topol{#2}\rangle} % topological space % \newcommand{\alg}{\algk{A}} \newcommand{\algB}{\algk{B}} \newcommand{\algF}{\algk{F}} \newcommand{\algR}{\algk{R}} \newcommand{\algX}{\algk{X}} \newcommand{\algY}{\algk{Y}} % \newcommand\coll{\collk{C}} \newcommand\collB{\collk{B}} \newcommand\collF{\collk{F}} \newcommand\collG{\collk{G}} \newcommand{\tJ}{\topol{J}} \newcommand{\tS}{\topol{S}} \newcommand\openconv{\collk{U}} % \newenvironment{my-matrix}[1]{\begin{bmatrix}}{\end{bmatrix}} \newcommand{\colvectwo}[2]{\begin{my-matrix}{c}{#1}\\{#2}\end{my-matrix}} \newcommand{\colvecthree}[3]{\begin{my-matrix}{c}{#1}\\{#2}\\{#3}\end{my-matrix}} \newcommand{\rowvecthree}[3]{\begin{bmatrix}{#1}&{#2}&{#3}\end{bmatrix}} \newcommand{\mattwotwo}[4]{\begin{bmatrix}{#1}&{#2}\\{#3}&{#4}\end{bmatrix}} % \newcommand\optfdk[2]{#1^\mathrm{#2}} \newcommand\tildeoptfdk[2]{\tilde{#1}^\mathrm{#2}} \newcommand\fobj{\optfdk{f}{obj}} \newcommand\fie{\optfdk{f}{ie}} \newcommand\feq{\optfdk{f}{eq}} \newcommand\tildefobj{\tildeoptfdk{f}{obj}} \newcommand\tildefie{\tildeoptfdk{f}{ie}} \newcommand\tildefeq{\tildeoptfdk{f}{eq}} \newcommand\xdomain{\mathcalfont{X}} \newcommand\xobj{\optfdk{\xdomain}{obj}} \newcommand\xie{\optfdk{\xdomain}{ie}} \newcommand\xeq{\optfdk{\xdomain}{eq}} \newcommand\optdomain{\mathcalfont{D}} \newcommand\optfeasset{\mathcalfont{F}} % \newcommand{\bigpropercone}{\mathcalfont{K}} % \newcommand{\prescript}[3]{\;^{#1}{#3}} % %\)

Math Stories

Fundamental Theorems

Fundamental theorem of arithmetic

integer $n\geq2$ can be factored uniquely into products of primes, i.e., exist distinct primes, $p_1$, …, $p_k$, and $e_1,\ldots, e_k\in\naturals$ such that $$ n = p_1^{e_1} p_2^{e_2} \cdots p_k^{e_k} $$

Fundamental theorem of algebra

every non-constant single-variable polynomial with complex coefficients has at least one complex root, or equivalently, (the field of complex numbers) is algebraically closed, or equivalently, every non-zero, single-variable, degree $n$ polynomial with complex coefficients has, counted with multiplicity, exactly $n$ complex roots.
  • the fundamental theorem of algebra, also called d'Alembert's theorem or the d'Alembert–Gauss theorem
  • despite its name, not fundamental for modern algebra; named when algebra was synonymous with the theory of equations

Fundamental theorem of calculus

  • first fundamental theorem of calculus - for continuous real-valued function $f:[a,b]\to\reals$, function $F:[a,b]\to\reals$ defined by $ F(x) = \int_a^x f(t) dt $ is uniformly continuous on $[a,b]$ and differentiable on open interval $(a,b)$ and $$ F'(x) = f(x) $$ for all $x\in(a,b)$, hence $F$ is antiderivative of $f$
  • second fundamental theorem of calculus or Newton-Leibniz theorem - for real-valued function $f:[a,b]\to\reals$ and continuous function $F:[a,b]\to\reals$ which is antiderivative of $f$ in $(a,b)$, i.e. $ F'(x) = f(x) $, if $f$ is Riemann integrable on $[a,b]$, then $$ \int_a^b f(x) dx = F(b) - F(a) $$

Fundamental theorem of calculus for line integrals

line integral through a gradient field can be evaluated by evaluating the original scalar field at the endpoints of the curve, i.e., if $\varphi: X \to \reals$ is differentiable function and $\gamma$ is curve in $X\subset \reals$ which starts at point $p\in\reals^n$ and ends at point $q\in\reals^n$, then $$ \int_\gamma \nabla \varphi(x)^T dx = \varphi(q) - \varphi(p) $$

Fundamental theorem of cyclic groups

every subgroup of a cyclic group is cyclic; moreover, for finite cyclic group of order $n$, every subgroup's order is a divisor of $n$, and exists exactly one subgroup for each divisor.

Fundamental theorem of equivalence relations

equivalence relation $\sim$ on set $X$ partitions $X$; conversely, corresponding to any partition of $X$, exists equivalence relation $\sim$ on $X$

Fundamental theorem of finite abelian groups

every finite abelian group can be expressed as direct sum of cyclic subgroups of prime-power order, i.e., any finite abelian group $G$ is isomorphic to direct sum of form $$ \bigoplus_{i=1}^u \left(\integers/{k_i}\integers\right) $$ in either of the following canonical ways
  • numbers $k_1$, …, $k_u$ are powers of (not necessarily distinct) primes
  • $k_1$ divides $k_2$, which divides $k_3$, and so on up to $k_u$
  • also known as basis theorem for finite abelian groups

Fundamental theorem of finitely generated abelian groups

  • primary decomposition - every finitely generated abelian group is isomorphic to a direct sum of primary cyclic groups and infinite cyclic groups, i.e., every finitely generated abelian group $G$ is isomorphic to group of form $$ G = \integers^n \oplus \left(\integers/q_1 \integers\right) \oplus \cdots \oplus \left(\integers/q_t \integers\right) $$ where $n\geq0$ is rank, and numbers $q_1, \ldots, q_t$ are powers of (not necessarily distinct) prime numbers; in particular, $G$ is finite if and only if $n=0$, values of $n, q_1, \ldots, q_t$ are (up to rearranging indices) uniquely determined by $G$, i.e., exists one and only one way to represent $G$ as such decomposition
  • invariant factor decomposition - can also write any finitely generated abelian group $G$ as direct sum of form $$ G = \integers^{n} \oplus \left(\integers /{k_{1}}\integers\right) \oplus \cdots \oplus \left(\integers /{k_{u}}\integers\right) $$ where $k_1$ divides $k_2$, which divides $k_3$ and so on up to $k_u$; again, rank $n$ and invariant factors $k_1, \ldots, k_u$ are uniquely determined by $G$ (here with a unique order); rank and sequence of invariant factors determine group up to isomorphism

Fundamental theorem for Galois theory

for finite Galois extension, $K/k$
  • map $H \mapsto K^H$ induces isomorphism between set of subgroups of $G(K/k)$ & set of intermediate fields
  • subgroup, $H$, of $G(K/k)$, is normal if and only if $K^H/k$ is Galois
  • for normal subgroup, $H$, $\sigma\mapsto \restrict{\sigma}{K^H}$ induces isomorphism between $G(K/k)/H$ and $G(K^H/k)$

Fundamental theorem on homeomorphisms

for two groups $G$ and $H$ and group homeomorphism $f:G\to H$, normal subgroup $N\subset G$, natural surjective homeomorphism $\varphi:G\to G/N$ if $N$ is subset of $\Ker{f}$, exists unique homeomorphism $h:G/N\to H$ such that $$ f = h \circ \varphi $$

Fundamental theorem of ideal theory in number fields

every nonzero proper ideal in ring of integers of number field admits unique factorization into product of nonzero prime ideals; in other words, every ring of integers of number field is Dedekind domain

Fundamental theorem of linear algebra

number of columns of matrix $M$ is sume of rank of $M$ and nullity of $M$, or equivalently, dimension of domain of linear transformation $f$ is sum of rank of $f$ (dimension of image of $f$) and nullity of $f$ (dimension of kernel of $f$)

Fundamental theorem of linear programming

for linear program $$ \begin{array}{ll} \mbox{minimal} & c^Tx \\ \mbox{subject to} & Ax \leq b \end{array} $$ if $P=\set{x\in\reals^n}{Ax \leq b}$ is bounded polyhedron (hence polytope) and $x^\ast$ is optimal solution, then $x^\ast$ is either extreme point (i.e., vertex) of $P$ or lies on some face of $P$

Fundamental theorem of symmetric polynomials

for every commutative ring $A$, denote ring of symmetric polynomials in variables $X_1$, …, $X_n$ with coefficients in $A$ by $A[X_1,\ldots,X_n]^{S_n}$, which is polynomial ringt in $n$ elementary symmetric polynomials $e_k(X_1,\ldots,X_n)$ for $k=1,\ldots,n$, then every symmetric polynomial $P(X_1,\ldots,X_n) \in A[X_1,\ldots,X_n]^{S_n}$ has unique representation $$ P(X_1, \ldots, X_n) = Q(e_1(X_1,\ldots,X_n), \ldots, e_n(X_1,\ldots,X_n)) $$ for some polynomials $Q\in A[Y_1,\ldots,Y_n]$, or equivalently, ring homeomorphism that sends $Y_k$ to $e_k(X_1,\ldots,X_n)$ for $k=1,\ldots,n$ defines an isomorphism between $A[Y_1,\ldots,Y_n]$ and $A[X_1,\ldots,X_n]^{S_n}$

Duality

Dualities

  • duality
    • “very pervasive and important concept in (modern) mathematics''
    • “important general theme having manifestations in almost every area of mathematics''
  • dualities appear in many places in mathematics, e.g.
    • dual of normed space is space of bounded linear functionals on the space (page~here)
    • dual cones and dual norms are defined ( & )
    • can define dual generalized inequalities using dual cones ()
    • can find necessary and sufficient conditions for $K$-convexity using dual generalized inequalities ()
    • duality can be observed even in fundamental theorem for Galois theory, i.e., $G(K/E) \leftrightarrow E$ & $H \leftrightarrow K^H$ ()
    • exist dualities in continuous / discrete functions in time domain and continuous / discrete functions in frequency domain, i.e., as in Fourier Transformation
  • However, never fascinated more than duality appearing in optimization, e.g.,
    • properties such as weak duality () and strong duality ()
    • dual problem provides some bound for the optimal value of the original problem, hence certificate of suboptimality!
    • constraint qualifications such as Slater's condition () guarantee strong duality!

Updated: