AI - Study & Research **Sunghee Yun** #### **Table of contents** Studying AI ai-study-2025-0707.tex - 2 ML - ML Prerequisites - ML Basics - Reinforcement Learning • Al Research Recent Al Development References ml-prerequisite-2025-0707.tex - 6 ml-basics-2025-0706.tex - 54 rl-2025-0709.tex - 96 ai-newdevs-2024-1019.tex - 158 - 175 AI - Study & Research # Studying AI #### Best ways to learn AI & ML - first, learn basics college classes, online courses, (easy) books - no need to understand every mathematical details, but should know rough ideas! - hands-on is MUST! - learn and practice coding Python is MUST; do not do (only) R - learn git know how to develop efficiently, plus import others' work - I think online cources are blessing to mankind! - can't say "you can't do it because I don't have access to good resource or you don't go to good schools" because . . . they are available! - getting (expensive) certificates is good idea because . . . otherwise you wouldn't complete it! :) and can post it on your LinkedIn! - would be best if your task at work is related to ML - however, even if that's not the case or can't be the case, can always do your own personal projects - or contribute to public projects (on github)! #### **Books** - The Elements of Statistical Learning Hastie, Tibshirani & Friedman [HTF01] - Pattern Recognition and Machine Learning Christopher M. Bishop [Bis06] - Deep Learning Ian Goodfellow, Yoshua Bengio & Aaron Courville [GBC16] - Reinforcement Learning: An Introduction Richard S. Sutton & Andrew G. Barto [SB18] - Machine Learning: A Probabilistic Perspective Kevin P. Murphy [Mur12] - Probabilistic Graphical Models Daphne Koller & Nir Friedman [KF09] - Convex Optimization Stephen Boyd & Lieven Vandenberghe [BV04] #### **Andrew Ng!** #### Andrew Ng - (co-)founder of "Deep Learning.AI" and "Coursera", prominent figure in ML & AI - his courses highly regarded because well-structured and provide insights #### • latest Andrew Ng courses - Al Agents in LangGraph - Al Agentic Design Patterns with AutoGen - Introduction to On-device AI - Multi Al Agent Systems with Crew Al - Building Multimodal Search and RAG contrastive learning, multimodality to RAG - Building Agentic RAG with LlamaIndex - Quantisation In Depth - In Prompt Engineering for Vision Models - Getting Started with Mistral open-source models (Mistral 7B, Mixtral 8x7B) - Preprocessing Unstructured Data for LLM # **ML** Prerequisites **Linear Algebra Basics** #### Scalars, vectors, and matrices - real number $a \in \mathbf{R}$, called *scalar* - (ordered) collection of real numbers $(a_1, \ldots, a_n) \in \mathbf{R}^n$, called *vector* $$\begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix} \in \mathbf{R}^n \quad \text{- column vector}$$ $$\begin{bmatrix} a_1 & a_2 & \cdots & a_n \end{bmatrix} \in \mathbf{R}^{1 \times n} \quad \text{- row vector}$$ • (ordered) collection of 2-dimensional array, called *matrix* $$\begin{bmatrix} A_{1,1} & A_{1,2} & \cdots & A_{1,n} \\ A_{2,1} & A_{2,2} & \cdots & A_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ A_{m,1} & A_{m,2} & \cdots & A_{m,n} \end{bmatrix} \in \mathbf{R}^{m \times n}$$ #### **Transposes** transpose of row vector is column vector & vice versa $$\begin{bmatrix} a_1 & a_2 & \cdots & a_n \end{bmatrix}^T = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix} & & \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix}^T = \begin{bmatrix} a_1 & a_2 & \cdots & a_n \end{bmatrix}$$ ullet transpose of m-by-n matrix is n-by-m matrix $$\begin{bmatrix} A_{1,1} & A_{1,2} & \cdots & A_{1,n} \\ A_{2,1} & A_{2,2} & \cdots & A_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ A_{m,1} & A_{m,2} & \cdots & A_{m,n} \end{bmatrix}^T = \begin{bmatrix} A_{1,1} & A_{2,1} & \cdots & A_{m,1} \\ A_{1,2} & A_{2,2} & \cdots & A_{m,2} \\ \vdots & \vdots & \ddots & \vdots \\ A_{1,n} & A_{2,n} & \cdots & A_{m,n} \end{bmatrix} \in \mathbf{R}^{n \times m}$$ # Matrix-vector multiplication - for matrix $A \in \mathbf{R}^{m \times n}$ & vector $b \in \mathbf{R}^n$ - matrix-vector multiplication Ab defined by $$Ab = \begin{bmatrix} A_{1,1}b_1 + A_{1,2}b_2 + \dots + A_{1,n}b_n \\ A_{2,1}b_1 + A_{2,2}b_2 + \dots + A_{2,n}b_n \\ \vdots \\ A_{m,1}b_1 + A_{m,2}b_2 + \dots + A_{m,n}b_n \end{bmatrix} \in \mathbf{R}^m$$ in other words $$(Ab)_i = \sum_{j=1}^n A_{i,j} b_j$$ for $1 \le i \le m$ - ${\mathsf -}$ resulting quantity is vector of length m - number of columns of A must equal to length of b # **Matrix-matrix multiplication** - for matrices $A \in \mathbf{R}^{m \times n} \& B \in \mathbf{R}^{n \times p}$ - matrix-matrix multiplication $AB \in \mathbf{R}^{m \times p}$ defined by $$(AB)_{i,j} = \sum_{k=1}^{n} A_{i,k} B_{k,j} \quad \text{for } 1 \le i \le m$$ - resulting quantity is m-by-p matrix - order matters and number of columns of A must equal to number of rows of B - note matrix-vector multiplication is *special case* of matrix-matrix multiplication # **Functions** $$\bullet \ f:X\to Y$$ - $$X = \operatorname{dom} f$$ - domain of f - Y - codomain of f - $$\mathcal{R}(f) = \{f(x) \in Y | x \in X\}$$ - range of f #### Differentiation & derivatives - ullet for real-valued function $f: \mathbf{R} \to \mathbf{R}$ - derivative of f at $x \in \mathbf{R}$ $$f'(x) = \frac{d}{dx}f(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \in \mathbf{R}$$ - derivative exists if and only if limit exists - second derivative of f at $x \in \mathbf{R}$ $$f''(x) = \frac{d^2}{dx^2}f(x) = \lim_{h \to 0} \frac{f'(x+h) - f'(x)}{h} \in \mathbf{R}$$ - second derivative exists if and only if limit exists #### **Multivariate functions** • $f: \mathbf{R}^n \to \mathbf{R}$ - real-valued multivariate function $$f(x) = f\left(\left[egin{array}{c} x_1 \ x_2 \ dots \ x_n \end{array} ight] ight) = f(x_1, x_2, \ldots, x_n) \in \mathbf{R}$$ examples – $f: \mathbf{R}^3 \to \mathbf{R}$ - linear function $$f(x) = x_1 + 3x_2 + 2x_3$$ $- f: \mathbf{R}^3 \to \mathbf{R}$ - convex quadratic function $$f(x) = x_1^2 + x_1 x_2 + 3x_2^2 + 5x_3^2$$ #### Multivariate vector functions ullet $f: \mathbf{R}^n o \mathbf{R}^m$ - real-valued multivariate vector function $$f(x) = \left[egin{array}{c} f_1(x) \ f_2(x) \ dots \ f_m(x) \end{array} ight] \in \mathbf{R}^m$$ where $f_j: \mathbf{R}^n \to \mathbf{R}$ for $1 \le j \le m$ examples $- f: \mathbf{R}^3 \to \mathbf{R}^2$ - linear function $$f(x) = \begin{bmatrix} x_1 + 3x_2 + 2x_3 \\ -3x_2 + x_3 \end{bmatrix} \in \mathbf{R}^2$$ – $f: \mathbf{R}^3 \to \mathbf{R}^3$ – componentwise function $$f(x) = \begin{bmatrix} \exp(x_1) & \exp(x_2) & \exp(x_3) \end{bmatrix}^T \in \mathbf{R}^3$$ #### Partial derivative & gradient for $f: \mathbf{R}^n \to \mathbf{R}$ • *i*th partial derivative $$\frac{\partial}{\partial x_i} f(x) = \frac{f(x+he_i) - f(x)}{h} = \frac{f(\dots, x_{i-1}, x_i+h, x_{i+1}, \dots) - f(x)}{h}$$ where $e_i \in \mathbf{R}^n$ is *i*th unit vector gradient is vector of partial derivatives $$\nabla f(x) = \begin{bmatrix} \partial f(x)/\partial x_1 \\ \partial f(x)/\partial x_2 \\ \vdots \\ \partial f(x)/\partial x_n \end{bmatrix} \in \mathbf{R}^n$$ we have $$(\nabla f(x))_i = \frac{\partial}{\partial x_i} f(x) = e_i^T \nabla f(x) \in \mathbf{R}$$ #### **Jacobian** for $f: \mathbf{R}^n \to \mathbf{R}^m$ Jacobian matrix $$Df(x) = \begin{bmatrix} \frac{\partial f_1(x)}{\partial x_1} & \frac{\partial f_1(x)}{\partial x_2} & \cdots & \frac{\partial f_1(x)}{\partial x_n} \\ \frac{\partial f_2(x)}{\partial x_1} & \frac{\partial f_2(x)}{\partial x_2} & \cdots & \frac{\partial f_2(x)}{\partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_m(x)}{\partial x_1} & \frac{\partial f_m(x)}{\partial x_2} & \cdots & \frac{\partial f_m(x)}{\partial x_n} \end{bmatrix} \in \mathbf{R}^{m \times n}$$ equivalently $$Df(x) = \left[egin{array}{c} abla f_1(x)^T \\ abla f_2(x)^T \\ \vdots \\ abla f_m(x)^T ormalized \in \mathbf{R}^{m imes n} \end{array} ight]$$ ### Chain rule • for $f: \mathbf{R} \to \mathbf{R}^m$, $g: \mathbf{R}^m \to \mathbf{R}$ & $h = g \circ f$, i.e., $h(x) = g(f_1(x), \dots, f_m(x))$, derivative of h at $x \in \mathbf{R}$ $$h'(x) = \sum_{j=1}^{m} \frac{\partial}{\partial y_j} g(f(x)) f'_j(x) = \sum_{j=1}^{m} \nabla g(f(x))_j f'_j(x) \in \mathbf{R}$$ ullet for $f: \mathbf{R}^n o \mathbf{R}^m$, $g: \mathbf{R}^m o \mathbf{R}^p$ & $h=g\circ f$, Jacobian of h at $x\in \mathbf{R}^n$ $$Dh(x) = Dg(f(x))Df(x) \in \mathbf{R}^{p \times n}$$ - note $Dg(f(x)) \in \mathbf{R}^{p \times m} \& Df(x) \in \mathbf{R}^{m \times n}$ - first is *special case* of second #### Random experiments & probability law - random experiment - outcome varies in unpredictable fashion (even) when experiment is being repeated under same conditions - specified by stating experimental procedure and set of one or more measurements or observations - probability law - rule assigning probabilities to events of experiment that belong to event class ${\cal F}$ $$p:\mathcal{F}\to\mathsf{R}_+$$ - properties (or axioms) - for event $A \in \mathcal{F}$, p(A) called *probability* of A - for event $A, B \in \mathcal{F}$ with $A \cap B = \emptyset$ $$p(A \cup B) = p(A) + p(B)$$ # **Conditional probability** ullet probability of event A given that event B has occurred, called *conditional probability*, denoted by formula $$p(A|B) = \frac{p(A \cap B)}{p(B)}$$ - thus $$p(A \cap B) = p(A|B)p(B) = p(B|A)p(A)$$ • Bayes' theorem $$p(A|B) = \frac{p(B|A)p(A)}{p(B)}$$ # Independence \bullet for events A & B, when knowledge of occurrence of B does not alter probability of A - -A said to be *independent* of B - following statements are equivalent - -A is independent of B - B is independent of A $$- p(A|B) = p(A)$$ $$- p(B|A) = p(B)$$ $$- p(A \cap B) = p(A)p(B)$$ #### Random variables ullet discrete random variable X assumes values from countable set $\{x_1, x_2, \ldots\}$ ullet continuous random variable X assumes values from ${f R}$ • random vector X assumes values from \mathbb{R}^n #### PMF, PDF & CDF • probability mass function (PMF) of discrete $X \in
\mathbf{R}$ $$p_X(x) = p(X = x)$$ ullet probability density function (PDF) of continuous $X \in \mathbf{R}$ $$\int_{a}^{b} p_X(x) = p(a \le X \le b)$$ ullet cumulative distribution function (CDF) of (any) $X \in {f R}$ $$F_X(x) = p(X \le x)$$ - for discrete X $F_X(x) = \sum_{x' \leq x} p_X(x')$ - for continuous X $F_X(x) = \int_{-\infty}^{\overline{x}} p_X(x') dx'$ # Joint PMF, PDF & CDF • *joint PMF* of discrete X & Y $$p_{X,Y}(x,y) = p(X = x \& Y = y)$$ • *join PDF* of continuous X & Y $$\int_{c}^{d} \int_{a}^{b} p_{X,Y}(x,y) dx dy = p(a \le X \le b \& c \le Y \le d)$$ • *joint CDF* of *X* & *Y* $$F_{X,Y}(x,y) = p(X \le x \& Y \le y)$$ #### Joint PMF, PDF & CDF - random vector • (joint) PMF of discrete $X \in \mathbf{R}^n$ $$p_X(x) = p(X_1 = x_1 \& \cdots \& X_n = x_n)$$ • (join) PDF of continuous $X \in \mathbf{R}^n$ $$\int_{a_n}^{b_n} \cdots \int_{a_1}^{b_1} p_X(x) dx_1 \cdots dx_n = p(a_1 \le X_1 \le b_1 \& \cdots \& a_n \le X_n \le b_n)$$ • (joint) CDF of $X \in \mathbf{R}^n$ $$F_X(x) = p(X_1 \le x_1 \& \cdots \& X_n \le x_n)$$ ### **Expected value, variance & covariance matrix** - expected value - for discrete X $$\mathbf{E} X = \sum_{x} x p_X(x)$$ for conditions X $$\mathbf{E} X = \int_{-\infty}^{\infty} x p_X(x) dx$$ • variance for scalar $X \in \mathbf{R}$ $$Var(X) = E(X - EX)^{2} = EX^{2} - (EX)^{2}$$ • covariance matrix for vector $X \in \mathbf{R}^n$ $$\mathbf{Var}(X) = \mathbf{E}(X - \mathbf{E}X)(X - \mathbf{E}X)^{T} = \mathbf{E}XX^{T} - (\mathbf{E}X)(\mathbf{E}X)^{T}$$ ## **Conditional expectation** for two random variables X & Y expected value of Y conditioned on X $$\mathbf{E}(Y|X=x) = \int yp(y|x)dy$$ where $$p(y|x) = \frac{p_{X,Y}(x,y)}{p_X(x)}$$ note $$\mathop{\mathbf{E}}_{X,Y} f(X,Y) = \mathop{\mathbf{E}}_{X} \mathop{\mathbf{E}}_{Y} (f(X,Y)|X)$$ because $$\int \int f(x,y)p(x,y)dxdy = \int \left(\int f(x,y)p(y|x)dy\right)p(x)dx$$ **Discrete Random Variables** #### Bernoulli distribution - ullet model single binary trial with probability p of success (and, hence (1-p) of failure) - PMF, mean, variance $$p(k) = p^{k}(1-p)^{1-k} = \begin{cases} 1-p & \text{if } k=0\\ p & \text{if } k=1 \end{cases}$$ $$\mathbf{E}(X) = p \quad \mathbf{Var}(X) = p(1-p)$$ - ML applications (foundation for) - logistic regression, binary classification, modeling click-through rates, A/B testing outcomes #### **Binomial distribution** - ullet model number of successes in n independent Bernoulli trials with probability p - PMF, mean, variance $$p(k) = \binom{n}{k} p^k (n-p)^{1-k}$$ for $1 \le k \le n$ $\mathbf{E}(X) = np \quad \mathbf{Var}(X) = np(1-p)$ - ML applications - modeling conversion rates, quality control testing, ensemble voting methods, batch processing success rates #### **Multinomial distribution** - ullet generalizes binomial distribution to multiple categories with probabilities p_1,\ldots,p_k - PMF, mean, variance $$p(k) = rac{n!}{x_1! \cdot \dots \cdot x_k!} p_1^{x_1} \cdot \dots \cdot p_k^{x_k}$$ $\mathbf{E}(X_i) = np_i \quad \mathbf{Var}(X_i) = np_i (1 - p_i) \quad \mathbf{Cov}(X_i, X_j) = -np_i p_j$ - ML applications - multi-class classification, topic modeling, document classification, NLP, recommendation system - market basket analysis, survey analysis, election pollings - genetics, clinical trials, quality control - widely used in Bayesian inference with Dirichlet priors #### **Geometric distribution** - model number of trials needed to achieve first success in independent Bernoulli trials - PMF, mean, variance $$p(k) = p(1-p)^{k-1}$$ $\mathbf{E}(X) = 1/p$ $\mathbf{Var}(X) = (1-p)/p^2$ - ML applications - modeling time-to-conversion, failure analysis, reinforcement learning episode lengths, web crawling stopping conditions - memoryless property p(X > m + n | X > m) = p(X > n) # **Negative binomial distribution** - model number of trials needed to achieve r successes in independent Bernoulli trials - PMF, mean, variance $$p(k) = {k-1 \choose r-1} p^r (1-p)^{k-r}$$ $\mathbf{E}(X) = r/p$ $\mathbf{Var}(X) = r(1-p)/p^2$ - ML applications - modeling overdispersed count data, customer acquisition costs, reliability engineering, text analysis for word frequencies - often used when Poisson assumptions are violated due to overdispersion July 11, 2025 ### Poisson distribution - model number of events occurring in fixed interval of time or space - PMF, mean, variance $(\lambda > 0)$ $$p(k) = e^{-\lambda} \lambda^k / k!$$ $\mathbf{E}(X) = \lambda$ $\mathbf{Var}(X) = \lambda$ - ML applications - modeling web traffic, system failures - word counts (in NLP), user interactions (in recommendation systems) - ullet approximates binomial when n is large & p is small with =np - sum of independent Poisson variables is Poisson ### Hypergeometric distribution - ullet model number of successes in n draws without replacement from finite population of size N containing K successes - PMF, mean, variance $(N, K \in \mathbf{N} \text{ with } N > K)$ $$p(k) = \frac{\binom{K}{k} \binom{N-K}{n-k}}{\binom{N}{n}} \quad \mathbf{E}(X) = \frac{nK}{N} \quad \mathbf{Var}(X) = \frac{nK}{N} \cdot \frac{N-K}{N} \cdot \frac{N-n}{N-1}$$ - ML applications - sampling without replacement, quality control testing - feature selection validation, A/B testing with finite populations # **Continuous Random Variables** #### **Uniform distribution** - ullet model equally likely outcomes over continuous interval [a,b] representing complete uncertainty within bounded range - PDF, mean, variance $(a, b \in \mathbf{R} \text{ with } b > a)$ $$p(x) = 1/(b-a)I_{[a,b]}(x)$$ $\mathbf{E}(X) = (a+b)/2$ $\mathbf{Var}(X) = (b-a)^2/12$ - ML applications - Monte Carlo sampling, generating baseline distributions for hypothesis testing - maximum entropy distribution for bounded continuous support - foundation for pseudo-random number generation and inverse transform sampling ### **Gaussian distribution** - most important continuous distribution - model symmetric bell-shaped data arising from many natural processes - PDF, mean, variance $(\mu \in \mathbf{R}, \sigma > 0)$ $$p(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-(x-\mu)^2/2\sigma^2} \quad \mathbf{E}(X) = \mu \quad \mathbf{Var}(X) = \sigma^2$$ - ML applications - linear regression error terms, NN weight initialization, PCA, noise modeling - invariant under linear transformations, maximum entropy for given mean and variance #### Multivaraite Gaussian distribution - generalize scalar Gaussian to random vector - PDF, mean, variance $(\mu \in \mathbf{R}^n, \Sigma \in \mathbf{S}^n_{++})$ $$p(x) = \frac{1}{(2\pi)^{n/2} \det(\Sigma)^{1/2}} e^{-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)} \quad \mathbf{E}(X) = \mu \quad \mathbf{Cov}(X) = \Sigma$$ - ML applications - Gaussian mixture, PCA, Kalman filtering, Gaussian processes, latent variable models - maximum likelihood estimation having closed-form solution, foundation for many Bayesian models ### **Exponential distribution** - model time between events in Poisson process, representing memoryless waiting times or lifetimes - PDF, mean, variance $(\lambda > 0)$ $$p(x) = \lambda e^{-\lambda x} I_{[0,\infty)}(x)$$ $\mathbf{E}(X) = 1/\lambda$ $\mathbf{Var}(X) = 1/\lambda^2$ - ML applications - system failure times, web session durations, survival analysis - ullet memoryless property p(X>s+t|X>s)=p(X>t) only continuous distribution with this property, minimum of exponentials is exponential ### **Gamma distribution** - \bullet model positive continuous values generalizing exponential distribution to allow for more flexible shapes, e.g., for waiting times for multiple events - PDF, mean, variance $(\alpha, \beta > 0)$ $$p(x) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\beta x} I_{[0, \infty)}(x) \quad \mathbf{E}(X) = \alpha/\beta \quad \mathbf{Var}(X) = \alpha/\beta^2$$ - ML applications - survival analysis, queuing theory - ullet exponential is special case when lpha=1, sum of independent exponentials is gamma, conjugate prior for Poisson and exponential distributions #### **Beta distribution** - ullet model probabilities and proportions, defined on [0,1] with flexible shapes from uniform to highly skewed - PDF, mean, variance $(\alpha, \beta > 0)$ $$p(x) = \frac{\Gamma(\alpha, \beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha - 1} (1 - x)^{\beta - 1} \ \mathbf{E}(X) = \frac{\alpha}{\alpha + \beta} \ \mathbf{Var}(X) = \frac{\alpha\beta}{(\alpha + \beta)^2 (\alpha + \beta + 1)}$$ - ML applications - modeling success rates, A/B testing, probability calibration - ullet uniform is special case when $\alpha=\beta=1$, conjugate prior for Bernoulli & binomial related to Dirichlet distribution ### Log-normal distribution - model positive values where logarithm follows normal distribution, representing multiplicative processes and heavy-tailed phenomena - PDF, mean, variance ($\mu \in \mathbf{R}, \sigma > 0$) $$p(x) = e^{-(\log x - \mu)^2/2\sigma^2} / x\sigma\sqrt{2\pi}$$ $\mathbf{E}(X) = e^{\mu + \sigma^2/2}$ $\mathbf{Var}(X) = (e^{\sigma^2} - 1)e^{2\mu + \sigma^2}$ - ML applications - modeling income distributions, stock prices, file sizes, network traffic, biological measurements, computational complexity - heavy right tail, multiplicative central limit theorem ### **Chi-square distribution** - model sum of squares of independent standard normal random variables, fundamental in statistical testing and confidence intervals - PDF, mean, variance ($\nu \in \mathbf{N}$ degree of freedom) $$p(x) = \frac{1}{2^{\nu/2}\Gamma(\nu/2)} x^{\nu/2-1} e^{-x/2} I_{[0,\infty)}(x) \quad \mathbf{E}(X) = \nu \quad \mathbf{Var}(X) = 2\nu$$ - ML applications - goodness-of-fit testing, feature selection, confidence intervals for variance, regularization in NN - special case of gamma distribution, sum of independent chi-squares is chi-square #### Student's *t*-distribution - model sum of squares of independent standard normal random variables, fundamental in statistical testing and confidence intervals - PDF, mean, variance ($\nu > 0$ degrees of freedom almost always positive integer) $$p(x) =
\frac{\Gamma((\nu+1)/2)}{\sqrt{\pi\nu}\Gamma(\nu/2)} (1+x^2/\nu)^{-(\nu+1)/2}$$ $$\mathbf{E}(X) = \begin{cases} 0 & \text{if } \nu > 1\\ \text{undefined otherwise} \end{cases}$$ $$\mathbf{Var}(X) = \begin{cases} \frac{\nu}{(\nu-2)} & \text{if } \nu > 2\\ \infty & \text{if } 1 < \nu \leq 2\\ \text{undefined otherwise} \end{cases}$$ - ML applications - Bayesian inference, robust regression, confidence intervals with small samples, uncertainty quantification in DL \bullet heavier tails than normal, approaches standard normal as ν approaches ∞ , symmetric around zero, undefined moments for small ν #### Weibull distribution - model survival times & failure rates with flexible hazard functions, generalizing exponential distribution for reliability analysis - PDF, mean, variance $(\lambda, k > 0)$ $$p(x) = (k/\lambda)(x/\lambda)^{k-1}e^{-(x/\lambda)^k}I_{[0,\infty)}(x) \quad \mathbf{E}(X) = \lambda\Gamma(1+1/k)$$ - ML applications - survival analysis, reliability engineering, wind speed modeling, NN activation functions, extreme value theory - flexible hazard function, minimum of Weibull variables is Weibull ### **Cauchy distribution** - model heavy-tailed symmetric data with undefined mean and variance, arising in physics and robust statistics - PDF, mean, variance $(x_0 \in \mathbb{R}, \gamma > 0)$ $$p(x) = \frac{1}{\pi \gamma (1 + ((x - x_0)/\gamma)^2)}$$ $\mathbf{E}(X) = \text{undefined}$ $\mathbf{Var}(X) = \text{undefined}$ - ML applications - robust statistics, modeling outliers, Bayesian inference with heavy-tailed priors, physics simulations, anomaly detection - no defined moments, stable distribution, ratio of two independent normals is Cauchy ### Laplace distribution - model symmetric data with heavier tails than normal, representing difference between two independent exponential variables - PDF, mean, variance $(\mu \in \mathbf{R}, b > 0)$ $$p(x) = \frac{1}{2b} \exp(-|x - \mu|/b)$$ $\mathbf{E}(X) = \mu$ $\mathbf{Var}(X) = 2b^2$ - ML applications - lasso, robust regression, sparse coding, image processing, privacy-preserving ML - maximum entropy for given mean absolute deviation, related to L1 penalty, robust to outliers (fundamentally more than normal distribution) #### Pareto distribution - model heavy-tailed phenomena following power-law distributions, representing "80-20 rule" and scale-free networks - PDF, mean, variance $(x_m, \alpha > 0)$ $$p(x) = \alpha x_m^{\alpha} / x^{\alpha+1}$$ $$\mathbf{E}(X) = \begin{cases} \infty & \text{if } \alpha \leq 1 \\ \alpha x_m / (\alpha - 1) & \text{if } \alpha > 1 \end{cases}$$ $$\mathbf{Var}(X) = \begin{cases} \infty & \text{if } \alpha \leq 2 \\ \alpha x_m^2 / (\alpha - 1)^2 (\alpha - 2) & \text{if } \alpha > 2 \end{cases}$$ - ML applications - model wealth distributions, network degree distributions, web page rankings, file sizes, NLP ullet heavy right tail, scale-free property, finite moments only for sufficiently large lpha, basis for power-law distributions # **ML** Basics Estimation, Regression, and Inference # The optimal estimator - estimation problem - for two random variables $X \in \mathbf{R}^n$ & $Y \in \mathbf{R}^m$ - design estimator or predictor $g: \mathbf{R}^n \to \mathbf{R}^m$ to make g(X) as close as possible to Y - when closeness measured by mean-square-error (MSE), the optimal solution exists $$g^*(x) = \mathbf{E}(Y|X=x)$$ ### **Proof of optimality** $$\mathbf{E}_{X,Y}(g(X) - g^*(X))^T (g^*(X) - Y) = \mathbf{E}_{X,Y} \mathbf{E}((g(X) - g^*(X))^T (g^*(X) - Y)|X)$$ $$= \mathbf{E}_{X,Y} (g(X) - g^*(X))^T \mathbf{E}_{Y} (g^*(X) - Y)|X)$$ $$= 0$$ hence $$\begin{aligned} \mathbf{E} \|g(X) - Y\|_{2}^{2} &= \mathbf{E} \|g(X) - g^{*}(X) + g^{*}(X) - Y\|_{2}^{2} \\ &= \mathbf{E} \|g(X) - g^{*}(X)\|_{2}^{2} + \mathbf{E} \|g^{*}(X) - Y\|_{2}^{2} + 2 \mathbf{E} (g(X) - g^{*}(X))^{T} (g^{*}(X) - Y) \\ &= \mathbf{E} \|g(X) - g^{*}(X)\|_{2}^{2} + \mathbf{E} \|g^{*}(X) - Y\|_{2}^{2} \\ &\geq \mathbf{E} \|g^{*}(X) - Y\|_{2}^{2} \end{aligned}$$ # Regression • in most cases, not possible to obtain g^* (unless, e.g., full knowledge of join PDF) - regression problem - given data set $D = \{(x_1, y_1), \dots, (x_N, y_N)\} \subset \mathbf{R}^n \times \mathbf{R}^m$ - find $g:\mathbf{R}^n \to \mathbf{R}^m$ to make g(X) as close as possible to Y - ullet given certain regression method, regressor depends on dataset D $$g(\cdot; D)$$ #### Bias & variance assuming ${\mathcal D}$ is random variable for dataset D estimation MSE is $$\underbrace{\frac{\mathbf{E}}{X,Y,\mathcal{D}} \|g(X;\mathcal{D}) - Y\|_{2}^{2}}_{\text{Variance}} = \underbrace{\frac{\mathbf{E}}{X,\mathcal{D}} \|g(X;\mathcal{D}) - \frac{\mathbf{E}}{\mathcal{D}} g(X;\mathcal{D})\|_{2}^{2}}_{\text{Variance}} + \underbrace{\frac{\mathbf{E}}{X} \|\frac{\mathbf{E}}{\mathcal{D}} g(X;\mathcal{D}) - g^{*}(X)\|_{2}^{2}}_{\text{bias}} + \underbrace{\frac{\mathbf{E}}{X,Y} \|g^{*}(X) - Y\|_{2}^{2}}_{\text{noise}}$$ $$= \underbrace{\frac{\mathbf{E}}{X,\mathcal{D}} \|g(X;\mathcal{D}) - \frac{\mathbf{E}}{\mathcal{D}} g(X;\mathcal{D})\|_{2}^{2}}_{\text{Variance}} + \underbrace{\frac{\mathbf{E}}{X,Y} \|\frac{\mathbf{E}}{\mathcal{D}} g(X;\mathcal{D}) - Y\|_{2}^{2}}_{\text{bias} + \text{noise}}$$ - bias & variance - bias measures how good model is in average - variance measures how much model varies depending on dataset it is trained on - noise cannot be reduced even with the optimal predictor # Model choice & hyperparameter optimization - want to choose model or modeling method to make both bias & variance low - (too) complex models have low bias, but high variance - (too) simple models have low variance, but high bias - usually solved by *hyperparameter optimization* - sometimes called *hyperparameter tuning* ### **MLE** - maximum likelihood estimation (MLE) - assume parameterized distribution of $X \in \mathbf{R}^n$ by $\theta \in \Theta$ $p(x;\theta)$ - find θ maximizing *likelihood function* $$p(x_1,\ldots,x_N; heta) = \prod_{i=1}^N p(x_i; heta)$$ MLE solution $$\hat{ heta}_{ ext{MLE}} = rgmax_{ heta \in \Theta} \prod_{i=1}^N p(x_i; heta)$$ ### **MAP** estimation - maximum a posteriori (MAP) estimation - assume *prior knowledge* of θ $p(\theta)$ - assume parameterized distribution of $X \in \mathbf{R}^n$ by θ $p(x|\theta)$ - find θ maximizing posteriori probability $$p(\theta|x_1,\ldots,x_N)$$ - Bayes' theorem implies $p(\theta|x_1,\ldots,x_N) \propto p(\theta) \prod_{i=1}^N p(x_i|\theta)$ - MAP solution $$\hat{\theta}_{\mathrm{MAP}} = \operatorname*{argmax}_{\theta \in \Theta} p(\theta) \prod_{i=1}^{N} p(x_i | \theta)$$ ### **Bayesian inference** - both MLE & MAP estimation are point estimations - Bayesian inference - updates prior distribution by replacing it with posterior distribution - conjugate prior - if prior can be further parameterized by hyperparameter α and posterior is in same probability distribution family, both prior and posterior called *conjugate distributions*, prior called *conjugate prior* $$p(\theta; \alpha)$$ - in this case, can update hyperparameter α , *i.e.*, find α^+ such that $$p(\theta; \alpha^+) = p(\theta|x_1, \dots, x_N; \alpha) = \frac{p(\theta; \alpha) \prod_{i=1}^N p(x_i|\theta; \alpha)}{p(x_1, \dots, x_N; \alpha)}$$ ### Bayesian algorithms & methods - exact inference methods - conjugate priors e.g., Beta-Binomial, Normal-Normal, etc. - Markov Chain Monte Carlo (MCMC) - Metropolis-Hastings algorithm, Gibbs sampling, Hamiltonian Monte Carlo (HMC) - variational inference (VI) - mean field variational Bayes assuming parameter independence for tractability - structured variational inference maintaining dependencies & inference tractability - variational autoencoder (VAE) NN-based VI for complex distributions ### Pros & cons of Bayesian inference #### pros - principled uncertainty quantification providing complete probability distributions - incorporates prior knowledge allowing to formally include domain expertise, etc. - coherent framework providing mathematically consistent approach - natural sequential learning easily handles streaming data or online learning scenarios - interpretable results outputs directly interpretable as probabilities #### cons - computational complexity often requiring sophisticated sampling methods - prior sensitivity, scalability issues, implementation difficulty, slower inference, model selection challenges # **Machine learning** #### ML - subfield of computer science that "gives computers the ability to learn without being explicitly programmed." - Arthur Samuel (1959) - not magic, still less intelligent than humans for many cases - numerically minimizes certain (mathematical) loss function to (indirectly) solve some statistically meaningful problems programmed Machine learning is the subfield of computer science that gives "computers the ability to learn without being explicitly programmed." Arthur Samuel ### Two famous quotes and one non-famous quote #### Albert Einstein The grand aim of all science is to cover the greatest number of empirical facts by logical deduction from the smallest possible number of hypotheses or axioms. #### Alfred North Whitehead Civilization advances by extending the number of important operations which we can perform without thinking about them. - Operations of thought are like cavalry charges in a battle – they are strictly limited in number, they require fresh horses, and must only be made at decisive moments. #### Demis Hassabis ... biology can be thought of as information processing system, albeit extraordinarily complex and dynamic one ... just as mathematics turned out to be the right description language for physics, biology may turn out to be the perfect type of regime for the application of AI! # **Supervised learning** - most basic and widely used type of ML - model is trained on dataset where correct output or "label" is provided for each input - use cases - image classification, object detection, semantic segmentation - natural language processing
(NLP) text classification, sentiment analysis - predictive modeling, medical diagnosis - algorithms - linear regression, logistic regression, decision trees, random forest - support vector machine (SVM), k-nearest neighbors (kNN) # **Unsupervised learning** - model is given dataset without any labels or output - model finds patterns & structure within data on its own - use cases - clustering, dimensionality reduction - anomaly detection, generative models - algorithms - k-means clutering, hierarchical clustering, principal component analysis (PCA) - t-distributed stochastic neighbor embedding (t-SNE) ### Reinforcement learning - (quite different from supervised & unsupervised learnings) - model learns from consequences of its actions - model receives feedback on its performance; feedback called reward - uses that information to adjust its actions and improve its performance over time - use cases - robotics, game playing, autonomous vehicles, industrial control - healthcare, finance - algorithms - Q-learning, SARSA, DQN, A3C, policy gradient #### Loss minimization - ullet assume data set $\{(x^{(1)},y^{(1)}),\ldots,(x^{(m)},y^{(m)})\}$ with $x^{(i)}\in\mathbf{R}^n$, $y^{(i)}\in\mathbf{R}^q$ - loss minimization is to solve minimize $$\frac{1}{m}\sum_{i=1}^m l(y^{(i)}, f(x^{(i)}; \theta))$$ where optimization variable is $\theta \in \mathbf{R}^p$, $f: \mathbf{R}^n \times \mathbf{R}^p \to \mathbf{R}^q$ is model function & $l: \mathbf{R}^q \times \mathbf{R}^q \to \mathbf{R}_+$ is loss function - find model with smallest modeling error - loss function examples - Eucleadina norm (2-norm) $\|y \hat{y}\|_2^2$ - 1-norm $\|y \hat{y}\|_1$ - soft-max $y^T \exp(\hat{y})/\mathbf{1}^T \exp(\hat{y})$ # Statistical problem formulation - ullet assume data set $X_m = \{x^{(1)}, \dots, x^{(m)}\}$ - drawn independently from (true, but unknown) data generating distribution $p_{\mathrm{data}}(x)$ - maximum likelihood estimation (MLE) is to solve maximize $$p_{\mathrm{model}}(X; \theta) = \prod_{i=1}^m p_{\mathrm{model}}(x^{(i)}; \theta)$$ where optimization variable is heta - find most plausible or likely model that fits data - equivalent (but more numerically tractable) formulation maximize $$\log p_{\mathrm{model}}(X;\theta) = \sum_{i=1}^{m} \log p_{\mathrm{model}}(x^{(i)};\theta)$$ ### MLE & KL divergence ullet in information theory, Kullback-Leibler (KL) divergence defines distance between two probability distributions $p\ \&\ q$ $$D_{\mathrm{KL}}(p||q) = \mathop{\mathbf{E}}_{X \sim p} \log p(X) / q(X) = \int_{x \in \Omega} p(x) \log \frac{p(x)}{q(x)} dx$$ ullet KL divergence between data distribution $p_{ m data}$ & model distribution $p_{ m model}$ can be approximated by Monte Carlo method as $$D_{\mathrm{KL}}(p_{\mathrm{data}} \| p_{\mathrm{model}}(\theta)) \simeq \frac{1}{m} \sum_{i=1}^{m} (\log p_{\mathrm{data}}(x^{(i)}) - \log p_{\mathrm{model}}(x^{(i)}; \theta))$$ where $x^{(i)}$ are drawn (of course) according to p_{data} • hence minimizing KL divergence is equivalent to solving MLE problem! # **Equivalence of MLE to MSE** • assume model is Gaussian, i.e., $y \sim \mathcal{N}(g_{\theta}(x), \Sigma)$ $(g_{\theta}(x) \in \mathbf{R}^p, \Sigma \in \mathbf{S}_{++}^p)$ $$p(y|x;\theta) = \frac{1}{\sqrt{2\pi}^{p}|\Sigma|^{1/2}} \exp\left(-\frac{1}{2}(y - g_{\theta}(x))^{T} \Sigma^{-1}(y - g_{\theta}(x))\right)$$ ullet assuming that $\Sigma=lpha I_p$, log-likelihood becomes $$\begin{split} \sum_{i=1}^{m} \log p(x^{(i)}, y^{(i)}; \theta) &= \sum_{i=1}^{m} \log p(y^{(i)} | x^{(i)}; \theta) p(x^{(i)}) \\ &= -\sum_{i=1}^{m} \|y^{(i)} - g_{\theta}(x^{(i)})\|_{2}^{2} / 2\alpha - \frac{pm}{2} \log(2\pi\alpha) + \sum_{i=1}^{m} \log p(x^{(i)}) \end{split}$$ • hence minimizing mean-square-error (MSE) is equivalent to solving MLE problem! # Numerical optimization problem formulation • (true) problem to solve minimize $$\mathbf{E} l(g_{\theta}(X), Y)$$ - impossible to solve - loss minimize formulation surrogate problem to solve minimize $$f(\theta) = \frac{1}{m} \sum_{i=1}^m l(g_{\theta}(x^{(i)}), y^{(i)})$$ • formulation with regularization minimize $$f(\theta) = \frac{1}{m} \sum_{i=1}^m l(g_{\theta}(x^{(i)}), y^{(i)}) + \gamma r(\theta)$$ stochastic gradient descent (SGD) $$\theta^{k+1} = \theta^k - \alpha_k \nabla f(\theta^k)$$ **Deep Learning** # Deep learning (DL) - machine learning using artificial neural networks with multiple layers for - automatically learning hierarchical representations of data - key components - deep neural networks, hidden layers, backpropagation, activation functions - hierarchical feature learning, representation learning, end-to-end learning - key breakthroughs enabling DL - massively available data, GPU computing, algorithmic advances # Convolutional neural network (CNN) - specialized DL learning architecture designed for - processing grid-like data such as images - where spatial relationships between pixels matter - key components - convolutional layers, pooling layers, activation functions, fully connected layers - how it works - feature extraction, translation invariance, parameter sharing - why it excels - local connectivity, hierarchical learning # Recurrent neural network (RNN) - neural network designed for - processing sequential data by maintaining memory of previous inputs - key components - hidden states, recurrent connections, input/output layers, weight sharing - how it works - sequential processing, memory mechanism, temporal dependencies - why it excels - variable length input, context awareness, flexible architecture - variants long short-term memory (LSTM), gated recurrent unit (GRU) **Training DNN using SGD** #### **Notations** - ullet $p \ / \ q$ dimension of input / output spaces - $l: \mathbf{R}^q \times \mathbf{R}^q o \mathbf{R}_+$ loss function - ullet d depth of neural network - n_i ($1 \le i \le d$) number of perceptrons in ith layer - $ullet z^{[i]} \in \mathbf{R}^{n_i}$ input to ith layer - ullet $o^{[i]} \in \mathbf{R}^{n_i}$ output of ith layer - ullet $W^{[i]} \in \mathbf{R}^{n_i imes n_{i-1}}$ weights of connections between (i-1)th and ith layer - $ullet \ w^{[i]} \in \mathbf{R}^{n_i imes n_{i-1}}$ bias weights of ith layer - ullet $\phi^{[i]}: \mathbf{R}^{n_i} ightarrow \mathbf{R}^{n_i}$ activation functions of ith layer # **Basic unit & activation function** #### • basic unit #### • activation function ## **Neural net equations** ullet modeling function for the (deep) neural network $g_{ heta}: \mathbf{R}^p ightarrow \mathbf{R}^q$ $$g_{ heta} = \phi_{ heta}^{[d]} \circ \psi_{ heta}^{[d]} \circ \cdots \circ \phi_{ heta}^{[1]} \circ \psi_{ heta}^{[1]}$$ or equivalently $$g_{\theta}(x) = \phi_{\theta}^{[d]}(\psi_{\theta}^{[d]}(\cdots(\phi_{\theta}^{[1]}(\psi_{\theta}^{[1]}(x)))))$$ - for ith layer - output via (componentwise) activation function $$o^{[i]} = \phi^{[i]}(z^{[i]}) \Leftrightarrow o^{[i]}_j = \phi^{[i]}_j(z^{[i]}_j) \quad (1 \le j \le n_i)$$ – input via affine transformation $\psi^{[i]}: \mathbf{R}^{n_{i-1}} ightarrow \mathbf{R}^{n_i}$ $$z^{[i]} = \psi^{[i]}(o^{[i-1]}) = W^{[i]}o^{[i-1]} + w^{[i]}$$ ## Stochastic gradient descent • ML training tries to minimize some loss function - $f(\theta)$ depends on (not only θ , but also) batch of data $(x^{(1)}, y^{(1)}), \ldots (x^{(m)}, y^{(m)})$ minimize $$f(\theta)$$ - while exist hundreds of optimization methods solving this problem - the only method used widely is stochastic gradient descent! - (stochastic) gradient descent $$\theta^{k+1} = \theta^k - \alpha^k \nabla f(\theta^k)$$ • backpropagation is used to evaluate this (stochastic) gradient using chain rule #### Chain rule suppose - two functions $f: \mathbf{R}^n \to \mathbf{R}^m \ \& \ g: \mathbf{R}^m \to \mathbf{R}$ - Jacobian of f Df : $\mathbf{R}^n \to \mathbf{R}^{m \times n}$ - gradient of g $\nabla g: \mathbf{R}^m \to \mathbf{R}^m$ - gradient of composite function $h = g \circ f$ $$\nabla h(\theta) = Df(\theta)^T \nabla g(f(\theta)) \in \mathbf{R}^n$$ (using matrix-vector multiplication) in other words $$\frac{\partial}{\partial \theta_i} h(\theta) = \sum_{j=1}^m \frac{\partial}{\partial \theta_i} f_j(\theta) \nabla_j g(f(\theta)) \quad \text{(scalar version)}$$ # Loss function & its gradient assume cost function of deep neural network is $$f(\theta) = \frac{1}{m} \sum_{k=1}^{m} l(g_{\theta}(x^{(k)}), y^{(k)}) = \frac{1}{m} \sum_{k=1}^{m} f_{k}(\theta)$$ where $$f_k(\theta) = l(g_{\theta}(x^{(k)}), y^{(k)})$$ • gradient is $$m abla_{ heta} f(heta) = \sum_{k=1}^m abla_{ heta} l(g_{ heta}(x^{(k)}), y^{(k)}) = \sum_{k=1}^m abla_{ heta} f_k(heta)$$ – $\emph{i.e.}$, evaluate gradient $abla_{ heta} f_k(heta)$ for each data point $(x^{(k)},y^{(k)})$ # **Hidden layers** ### Backpropagation formula using chain rule - for each data $(x^{(k)}, y^{(k)})$ - via activation function $$\frac{\partial}{\partial z_j^{[i]}} f_k(\theta) = \frac{\partial}{\partial o_j^{[i]}} f_k(\theta) \phi_j^{[i]'}(o_j^{[i]}) \quad \text{for } 1 \le j \le n_i$$ (1) where $\phi_j^{[i]'}(o_j^{[i]})$ is derivative of activation function $\phi_j^{[i]}$ evaluated at $o_j^{[i]}$ via affine transformation $$\frac{\partial}{W_{j,l}^{[i]}} f_k(\theta) = o_l^{[i-1]} \frac{\partial}{\partial z_j^{[i]}} f_k(\theta) \quad \text{for } 1 \le j \le n_i \& 1 \le l \le n_{i-1} \quad (2)$$ $$\frac{\partial}{\partial w_j^{[i]}} f_k(\theta) = \frac{\partial}{\partial z_j^{[i]}} f_k(\theta) \quad \text{for } 1 \le j \le n_i$$ (3) $$\frac{\partial}{\partial o_l^{[i-1]}} f_k(\theta) = \sum_{j=1}^{n_i} W_{j,l}^{[i]} \frac{\partial}{\partial z_j^{[i]}} f_k(\theta) \quad \text{for } 1 \le l \le n_{i-1}$$ (4) # Backpropagation formula using matrix-vector multiplication - for each data $(x^{(k)}, y^{(k)})$ - via activation function $$\nabla_{z[i]} f_k(\theta) = D\phi^{[i]} \nabla_{o[i]} f_k(\theta) \tag{5}$$ where $D\phi^{[i]}=\mathbf{diag}({\phi_1^{[i]}}'(o_1^{[i]}),\ldots,{\phi_{n_i}^{[i]}}'(o_{n_i}^{[i]}))$ is Jacobian of $\phi^{[i]}$ evaluated at $o^{[i]}$ via affine transformation
$$\nabla_{W^{[i]}} f_k(\theta) = \nabla_{z^{[i]}} f_k(\theta) o^{[i-1]^T} \in \mathbf{R}^{n_i \times n_{i-1}}$$ (6) $$\nabla_{w^{[i]}} f_k(\theta) = \nabla_{z^{[i]}} f_k(\theta) \in \mathbf{R}^{n_i}$$ (7) $$\nabla_{o^{[i-1]}} f_k(\theta) = W^{[i]^T} \nabla_{z^{[i]}} f_k(\theta) \in \mathbf{R}^{n_{i-1}}$$ (8) # Backpropagation formula using Python numpy package - for each data $(x^{(k)}, y^{(k)})$ - via activation function $$grad_z = phi_dir * grad_o$$ (9) where grad_z, phi_dir, grad_o are 1d numpy.ndarray of size n_i via affine transformation $$grad_W = numpy.dot(grad_z, val_o.T)$$ (10) $$grad_w = grad_z.copy()$$ (11) where val_o, grad_w are 1d numpy.ndarray of size n_i , grad_o_prev is 1d numpy.ndarray of size n_{i-1} , grad_W is 2d numpy.ndarray of shape (n_i, n_{i-1}) ### Gradient evaluation using backpropagation ullet forward propagation - evaluate for each $(x^{(k)},y^{(k)})$ $$g_{ heta}(x^{(k)}) = \phi_{ heta}^{[d]}(\psi_{ heta}^{[d]}(\cdots(\phi_{ heta}^{[1]}(\psi_{ heta}^{[1]}(x^{(k)}))))$$ - backpropagation evaluate partial derivatives backward - evaluate gradient with respect to output of output layer $o^{[d]} = g_{ heta}(x^{(k)})$ $$abla_{o[d]} f_k(\theta) = abla_{y_1} l(g_{\theta}(x^{(k)}), y^{(k)})$$ - evaluate gradient with respect to input from that with respect to output using (1), or equivalently, using (5) *i.e.*, evaluate $\nabla_{z[i]} f_k(\theta)$ from $\nabla_{a[i]} f_k(\theta)$ - evaluate gradient with respect to weights, bias, and intput of previous layer using (3), (4), & (2) or equivalently, using (7), (8), & (6) i.e., evaluate $\nabla_{W^{[i]}} f_k(\theta)$, $\nabla_{w^{[i]}} f_k(\theta)$ & $\nabla_{a^{[i-1]}} f_k(\theta)$ from $\nabla_{a^{[i]}} f_k(\theta)$ - repeat back to input layer to evaluate all $$\nabla_{W^{[1]}} f_k(\theta), \nabla_{w^{[1]}} f_k(\theta), \dots, \nabla_{W^{[d]}} f_k(\theta), \nabla_{w^{[d]}} f_k(\theta)$$ # ML in practice - define business problem business objective, success metrics, establish baselines (early) - data collection data cleaning, validation & exploratory data analysis (EDA) - feature engineering based on domain expertise - train/validation/test split stratified sampling, chronological splits for time-series - model selection or/and hyperparameter optimization - monitoring, retraining & notification - ullet start simple, iterative fast (fail fast!), validate business impact e.g., A/B test # Reinforcement Learning # Reinforcement learning (RL) - machine learning where agent learns how to take actions to achieve goal - by maximizing cumulative reward - while interacting with environment - learning from interaction foundational idea underlying all learning & intelligence - differs from supervised learning - labeled input and output pairs not presented - sub-optimal actions need not be explicitly corrected - focus is finding balance between exploration & exploitation # Why Deep RL? Koray Kavukcuoglu (director of research at Deepmind) says If one of the goals we work for here is AI, then it is at the core of that. RL is a very general framework for learning sequential decision making tasks. And DL, on the other hand, is (of course) the best set of algorithms we have to learn representations. And combinations of these two different models is the best answer so far we have in terms of learning very good state representations of very challenging tasks that are not just for solving toy domains but actually to solve challenging real world problems. # Markov decision process (MDP) - classical formulation of sequential decision making - actions influence not just immediate rewards, but also subsequent states, hence, involving delayed reward - need to trade-off immediate and delayed reward - elements states, actions, reward, and return - agent interacts with environment - agent makes decision as to which action to take with knowledge of state it's in - action changes (state of) environment - agent receives reward ### MDP & Markov property - agent in state S_t takes action A_t at t - receives *reward* R_{t+1} (from environment) - environment transitions to state S_{t+1} - sequence of random variables $S_0, A_0, R_1, S_1, A_1, R_2, S_2, A_2, R_3, S_3, A_3, \dots$ - Markov property S_{t+1} , $R_{t+1}|S_t$, A_t , R_t , S_{t-1} , A_{t-1} , R_{t-1} , . . . = S_{t+1} , $R_{t+1}|S_t$, A_t - formally expressed (using PDF) $$p(S_{t+1}, R_{t+1} | S_t, A_t, R_t, S_{t-1}, A_{t-1}, R_{t-1}, \ldots) = p(S_{t+1}, R_{t+1} | S_t, A_t)$$ #### Policy & return • policy - conditional probability of A_t given S_t $$\pi(A|S) = p(A_t|S_t),$$ - return (at t) $G_t = \sum_{k=0}^{\infty} \gamma^k R_{t+k} = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \cdots$ - ullet $\gamma \in [0,1]$ discount factor - if $\gamma = 0$, myopic - if $\gamma = 1$, truly far-sighted - if $\gamma \in (0,1)$, considers near-future rewards more importantly than those in far future #### State value function & action value function state value function (sometimes referred to simply as value function) $$v_{\pi}(s) = \mathop{\mathbf{E}}_{\pi,p} \left\{ \left. G_t \right| S_t = s \right\} = \mathop{\mathbf{E}}_{\pi,p} \left\{ \left. \sum_{k=0}^{\infty} \gamma^k R_{t+k} \right| S_t = s \right\}$$ - function of state expected return agent will get from s when following π - action value function (sometimes referred to simply as action function) $$q_{\pi}(s, a) = \mathop{\mathbf{E}}_{\pi, p} \{ G_t | S_t = s, A_t = a \} = \mathop{\mathbf{E}}_{\pi, p} \left\{ \sum_{k=0}^{\infty} \gamma^k R_{t+k} \middle| S_t = s, A_t = a \right\}$$ - function of state & action expected return agent will get from s when agent takes a - (most) RL algorithms (try to) maximize either of these functions not maximizing immediate reward, but long-term return #### **Bellman** - Richard E. Bellman - introduced dynamic programming (DP) in 1953 - proposed Bellman equation as necessary condition for optimality associated with DP $$v_{\pi}(s) \stackrel{:}{=} \mathbb{E}_{\pi}[G_{t} \mid S_{t} = s]$$ $$= \mathbb{E}_{\pi}\left[\sum_{k=0}^{\infty} \gamma^{k} R_{t+k+1} \mid S_{t} = s\right]$$ $$\stackrel{!}{=} \mathbb{E}_{\pi}\left[R_{t+1} + \gamma \sum_{k=0}^{\infty} \gamma^{k} R_{t+k+2} \mid S_{t} = s\right]$$ $$\stackrel{!}{=} \sum_{a} \pi(a|s) \sum_{s'} \sum_{r} p(s', r|s, a) \left[r + \gamma \mathbb{E}_{\pi}\left[\sum_{k=0}^{\infty} \gamma^{k} R_{t+k+2} \mid S_{t+1} = s'\right]\right]$$ $$= \sum_{a} \pi(a|s) \sum_{s', r} p(s', r|s, a) \left[r + \gamma v_{\pi}(s')\right], \quad \forall s \in \mathcal{S}, \quad (3.12)$$ #### **Bellman equations** Bellman equation for state value function $$v_{\pi}(s) = \sum_{a} \pi(a|s) q_{\pi}(s, a) = \sum_{a} \pi(a|s) \sum_{s', r} p(s', r|s, a) \left(r + \gamma v_{\pi}(s')\right)$$ (13) Bellman equation for action value function $$q_{\pi}(s, a) = \sum_{s', r} p(s', r|s, a) (r + \gamma v_{\pi}(s'))$$ $$= \sum_{s',r} p(s',r|s,a) \left(r + \gamma \sum_{a'} \pi(a'|s') q_{\pi}(s',a') \right)$$ (14) ### Bellman equation derviation - state value function - Markov property implies - value functions only depend on current state & action taken - function value closely related to function values of next states - these facts cleverly used to derive Bellman equations $$v_{\pi}(s) = \underset{\pi,p}{\mathbf{E}} \{G_{t} | S_{t} = s\}$$ $$= \underset{A_{t} | S_{t} = s}{\mathbf{E}} \underset{\pi,p}{\mathbf{E}} \{G_{t} | S_{t} = s, A_{t}\}$$ $$= \sum_{a} p(A_{t} = a | S_{t} = s) \underset{\pi,p}{\mathbf{E}} \{G_{t} | S_{t} = s, A_{t} = a\}$$ $$= \sum_{a} \pi(a|s) \underset{\pi,p}{\mathbf{E}} \{G_{t} | S_{t} = s, A_{t} = a\}$$ $$= \sum_{a} \pi(a|s) q_{\pi}(s, a)$$ (15) #### Bellman equation derviation - action value function $$q_{\pi}(s, a) = \underset{\pi, p}{\mathbf{E}} \left\{ G_{t} \middle| S_{t} = s, A_{t} = a \right\}$$ $$= \underset{S_{t+1}, R_{t+1} \mid S_{t} = s, A_{t} = a}{\mathbf{E}} \underset{\pi, p}{\mathbf{E}} \left\{ G_{t} \middle| S_{t} = s, A_{t} = a, S_{t+1}, R_{t+1} \right\}$$ $$= \underset{S_{t+1}, R_{t+1} \mid S_{t} = s, A_{t} = a}{\mathbf{E}} \underset{\pi, p}{\mathbf{E}} \left\{ \sum_{k=0}^{\infty} \gamma^{k} R_{t+k+1} \middle| S_{t} = s, A_{t} = a, S_{t+1}, R_{t+1} \right\}$$ $$= \underset{S_{t+1}, R_{t+1} \mid S_{t} = s, A_{t} = a}{\mathbf{E}} \underset{\pi, p}{\mathbf{E}} \left\{ R_{t+1} + \gamma \sum_{k=0}^{\infty} \gamma^{k} R_{t+k+2} \middle| S_{t} = s, A_{t} = a, S_{t+1}, R_{t+1} \right\}$$ $$= \underset{S', r}{\sum} p_{S_{t+1}, R_{t+1} \mid S_{t}, A_{t}} (s', r \mid s, a)$$ $$\underset{\pi, p}{\mathbf{E}} \left\{ R_{t+1} + \gamma G_{t+1} \middle| S_{t} = s, A_{t} = a, S_{t+1} = s', R_{t+1} = r \right\}$$ $$= \sum_{s',r} p_{S_{t+1},R_{t+1}|S_t,A_t}(s',r|s,a)$$ $$\left(r + \gamma \mathop{\mathbf{E}}_{\pi,p} \left\{ G_{t+1}|S_t = s, A_t = a, S_{t+1} = s', R_{t+1} = r \right\} \right)$$ $$= \sum_{s',r} p_{S_{t+1},R_{t+1}|S_t,A_t}(s',r|s,a) \left(r + \gamma \mathop{\mathbf{E}}_{\pi,p} \left\{ G_{t+1}|S_{t+1} = s' \right\} \right)$$ $$= \sum_{s',r} p_{S_{t+1},R_{t+1}|S_t,A_t}(s',r|s,a) \left(r + \gamma v_{\pi}(s')\right)$$ (16) # **Optimal functions** ullet define *optimal state-value function* as that of optimal policy π_* $$v_*(s) = v_{\pi_*}(s) = \max_{\pi \in \Pi} v_{\pi}(s)$$ (17) • (similarly) define optimal action-value function as that of π_* $$q_*(s,a) = q_{\pi_*}(s,a) = \max_{\pi \in \Pi} q_{\pi}(s,a)$$ (18) ## **Bellman optimality equations** (17) & (18) with (15) & (16) imply Bellman optimality equation for state value function $$v_*(s) = v_{\pi_*}(a) = \max_{a \in \mathcal{A}} q_{\pi_*}(s, a) = \max_{a \in \mathcal{A}} \sum_{s', r} p(s', r|s, a) \left(r + \gamma v_{\pi}(s')\right)$$ (19) Bellman optimality equation for action value function $$q_{*}(s, a) = q_{\pi_{*}}(s, a) = \sum_{s', r} p(s', r|s, a) \left(r + \gamma v_{\pi_{*}}(s')\right)$$ $$= \sum_{s', r} p(s', r|s, a) \left(r + \gamma \max_{a' \in \mathcal{A}} q_{\pi_{*}}(s', a')\right)$$ (20) **Dynamic Programming** # **Dynamic programming (DP)** - collection of algorithms to compute
optimal policies given perfect model of environment as MDP - provide essential foundation for understanding of RL methods - all RL algorithms can be viewed as attempts to achieve much the same effect as DP - only with less computation and without assuming perfect model of environment - key idea of RL in general - use of value functions to organize and structure search for good policies # Policy evaluation (prediction) - policy evaluation (in DP literature) - compute state-value function v_{π} for arbitrary policy π - also referred to as prediction problem - ullet existence and uniqueness of v_π guaranteed as long as either - $-\gamma < 1$ - eventual termination is guaranteed from all states under policy π - policy evaluation algorithm uses fact that all state value functions satisfy Bellman equation (note resemblance to 13) algorithm described in Table 1 $$v_{k+1}(s) \leftarrow \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) \left(r + \gamma v_k(s')\right)$$ | 0.0 | -14. | -20. | -22. | | | + | + | ļ | |------|------|------|------|--------------------|------------|------------|----------|---| | -14. | -18. | -20. | -20. | policy improvement | 1 | ţ | ļ | + | | -20. | -20. | -18. | -14. | - | 1 | t ₊ | t | ţ | | -22. | -20. | -14. | 0.0 | | t ₊ | → | + | | ## Algorithm - iterative policy evaluation ``` Inputs: \pi, MDP Algorithm parameters: \theta > 0 (small threshold determining accuracy of estimation) Initialize V(s) \in \mathbf{R} for all s \in \mathcal{S} except that V(\text{terminal}) = 0 Loop: \Delta \leftarrow 0 For each s \in \mathcal{S}: v \leftarrow V(s) V(s) \leftarrow \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) \left(r + \gamma V(s')\right) \Delta \leftarrow \max\{\Delta, |v - V(s)|\} until \Delta < \theta ``` Table 1: Iterative Policy Evaluation for estimating $V \sim v_\pi$ # **Policy iteration** • iterative process of improving policy to maximize value functions • algorithm described in Table 2 #### **Algorithm - policy iteration** ``` Inputs: MDP Algorithm parameters: \theta > 0 (small threshold determining accuracy of estimation) 1. Initialization V(s) \in \mathbf{R} and \pi(s) \in \mathcal{A}(s) for all s \in \mathcal{S} 2. Policy Evaluation Loop: \Delta \leftarrow 0 For each s \in \mathcal{S}: v \leftarrow V(s) V(s) \leftarrow \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) \left(r + \gamma V(s')\right) \Delta \leftarrow \max\{\Delta, |v - V(s)|\} until \Delta < \theta 3. Policy Improvement u \leftarrow \mathtt{true} For each s \in \mathcal{S} b \leftarrow \pi(s) \pi(s) \leftarrow \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) \left(r + \gamma v_{\pi}(s')\right) If b \neq \pi(s), then t \leftarrow \text{false} If u, then stop and return V \sim v_* and \pi \sim \pi_*; else go to 2 ``` Table 2: Policy Iteration (using iterative policy evaluation) for estimating $\pi \sim \pi_*$ #### Value iteration - drawback to policy iteration - each iteration involves policy evaluation - policy evaluation step can be truncated without losing convergence guarantees - value iteration - policy evaluation is stopped after just one sweep by turning Bellman optimality equation (19) into update rule - can be written as simple update operation combining policy improvement and truncated policy evaluation steps $$v_{k+1}(s) \leftarrow \max_{a \in \mathcal{A}} \sum_{s',r} p(s',r|s,a) \left(r + \gamma v_k(s')\right)$$ • (in-place version of) algorithm described in Table 3 ## **Algorithm - value iteration** ``` Inputs: MDP Algorithm parameters: \theta > 0 (small threshold determining accuracy of estimation) Initialize V(s) \in \mathbf{R} for all s \in \mathcal{S} except that V(\text{terminal}) = 0 Loop: \Delta \leftarrow 0 For each s \in \mathcal{S}: v \leftarrow V(s) V(s) \leftarrow \max_{a \in \mathcal{A}(s)} \sum_{s',r} p(s',r|s,a) \left(r + \gamma V(s')\right) \Delta \leftarrow \max\{\Delta,|v-V(s)|\} until \Delta < \theta Output: deterministic policy \pi such that \pi(s) = \operatorname{argmax}_{a \in \mathcal{A}(s)} \sum_{s',r} p(s',r|s,a) \left(r + \gamma V(s')\right) ``` Table 3: Value Iteration for estimating $\pi \sim \pi_*$ #### Monte Carlo methods - do not assume complete knowledge of environment - require only experience sample sequences of states, actions & rewards - from actual or simulated interaction with environment - require no prior knowledge of environment's dynamics - not complete probability distributions required for DP - yet can still attain optimal behavior - simulation can be used ## Monte Carlo prediction - (simply) average returns observed after visits to each state - Monte Carlo (MC) prediction methods very similar but slightly different theoretical properties - first-visit MC method most widely studied, dating back to 1940s - every-visit MC method extends more naturally to function approximation and eligibility traces - first-visit MC prediction algorithm described in Table 4 # Algorithm - first-visit MC prediction ``` Inputs: \pi Initialize: V(s) \in \mathbf{R} \text{ for all } s \in \mathcal{S} R(s) \leftarrow \operatorname{list}() \text{ for all } s \in \mathcal{S} Loop: Generate an episode following \pi: S_0, A_0, R_1, S_1, A_1, R_2, \ldots, S_{T-1}, A_{T-1}, R_T G \leftarrow 0 Loop for each step of episode, t + T - 1, T - 2, \ldots, 0: G \leftarrow \gamma G + R_{t+1} If S_t \notin \{S_0, S_1, \ldots, S_{t-1}\}: R(S_t).\operatorname{append}(G) V(S_t) \leftarrow R(S_t).\operatorname{average}() Until a certain criterion is satisfied ``` Table 4: First-visit MC prediction for estimating $V \sim v_{\pi}$ #### Monte Carlo control ullet proceed according to same pattern as DP, *i.e.*, according to idea of generalized policy iteration (GPI) - maintain both approximate policy & approximate value functions - value functions repeatedly altered to more closely approximate value function for current policy - policy repeatedly improved with respect to current value function - complete simple algorithm, called *Monte Carlo with Exploring Starts (ES)* described in Table 5 ## Algorithm - MC ES ``` Initialize: \pi(s) \in \mathcal{A}(s) \text{ for all } s \in \mathcal{S} Q(s,a) \in \mathbf{R} \text{ for all } s \in \mathcal{S} \text{ and } a \in \mathcal{A}(s) R(s,a) \leftarrow \mathrm{list}() \text{ for all } s \in \mathcal{S} \text{ and } a \in \mathcal{A}(s) Loop: \mathrm{Choose} \ S_0 \in \mathcal{S}, \ A_0 \in \mathcal{A}(S_0) \text{ randomly such that all pairs have probability } > 0 Generate an episode from S_0, \ A_0 \text{ following } \pi\colon S_0, A_0, R_1, S_1, A_1, R_2, \ldots, S_{T-1}, A_{T-1}, R_T G \leftarrow 0 Loop for each step of episode, t + T - 1, T - 2, \ldots, 0: G \leftarrow \gamma G + R_{t+1} If S_t \not\in \{S_0, S_1, \ldots, S_{t-1}\}: R(S_t, A_t). \mathrm{append}(G) Q(S_t, A_t) \leftarrow R(S_t, A_t). \mathrm{average}() \pi(S_t) \leftarrow \mathrm{argmax}_{a \in \mathcal{A}(S_t)} \ Q(S_t, a) Until a certain criterion is satisfied ``` Table 5: MC ES for estimating $\pi \sim \pi_*$ #### Monte Carlo control without exploring starts - want to avoid unlikely assumption of exploring starts - only general way to ensure that all actions are selected infinitely often is for agent to continue to select them - two approaches to ensure this - on-policy methods attempt to evaluate or improve policy used to make decisions - off-policy methods evaluate or improve policy different from used to generate data - ullet on-policy first-visit MC control using ϵ -greedy, not using unrealistic assumption of exploring starts, described in Table 6 #### Algorithm - on-policy first-visit MC control ``` Algorithm parameters: small \epsilon > 0 Initialize: \pi(s) \in \mathcal{A}(s) for all s \in \mathcal{S} Q(s,a) \in \mathbf{R} for all s \in \mathcal{S} and a \in \mathcal{A}(s) R(s,a) \leftarrow \mathsf{list}() \text{ for all } s \in \mathcal{S} \text{ and } a \in \mathcal{A}(s) Loop: Choose S_0 \in \mathcal{S}, A_0 \in \mathcal{A}(S_0) randomly such that all pairs have probability > 0 Generate an episode from S_0, A_0 following \pi: S_0, A_0, R_1, S_1, A_1, R_2, ..., S_{T-1}, A_{T-1}, R_T G \leftarrow 0 Loop for each step of episode, t + T - 1, T - 2, \dots, 0: G \leftarrow \gamma G + R_{t+1} If S_t \notin \{S_0, S_1, \dots, S_{t-1}\}: R(S_t, A_t).append(G) Q(S_t, A_t) \leftarrow R(S_t, A_t).average() A^* \leftarrow \operatorname{argmax}_{a \in \mathcal{A}(S_t)} For all a \in \mathcal{A}(S_t) \pi(a|S_t) \leftarrow \begin{cases} 1 - \epsilon + \epsilon/|\mathcal{A}(S_t)| & \text{if } a = A^* \\ \epsilon/|\mathcal{A}(S_t)| & \text{if } a \neq A^* \end{cases} Until a certain criterion is satisfied ``` Table 6: On-policy first-visit MC control (for ϵ -soft policies) for estimating $\pi \sim \pi_*$ **Temporal-difference Learning** ## Temporal-difference (TD) learning - combination of MC ideas & DP ideas - like MC, learn directly from raw experience without model of environment's dynamics - like DP, update estimates based in part on other learned estimates, without waiting for final outcome - they bootstrap - relationship between TD, DP & MC methods recurring theme in theory of RL - ullet will start focusing on policy evaluation or prediction problem, i.e., estimating v_{π} - control problem (to find optimal policy) - DP, TD & MC methods all use some variation of generalized policy iteration (GPI) #### TD prediction - both TD & MC use experience to solve prediction problem - simple every-visit MC method suitable for nonstationary environments $$V(S_t) \leftarrow V(S_t) + \alpha(G_t - V(S_t)) = (1 - \alpha)V(S_t) + \alpha G_t$$ - TD methods wait only until next time step - at t+1, form target and make update using reward R_{t+1} & estimate $V(S_{t+1})$ - TD(0) one-step TD simplest TD method $$V(S_t) \leftarrow V(S_t) + \alpha(R_{t+1} + \gamma V(S_{t+1}) - V(S_t))$$ = $(1 - \alpha)V(S_t) + \alpha(R_{t+1} + \gamma V(S_{t+1}))$ (21) - TD(0) is special case of TD(λ) & n-step TD methods - TD(0) described in Table 7 in procedural form # Algorithm -
TD(0) for estimating v_{π} ``` Inputs: the policy \pi to be evaluated Algorithm parameters: step size \alpha \in (0,1] Initialize: V(s) \in \mathbf{R} for all s \in \mathcal{S} except that V(\text{terminal}) = 0 Loop for each episode: Initialize S Loop for each step of episode: A \leftarrow \text{ action given by } \pi \text{ for } S Take action A, observe R, S' V(S) \leftarrow (1-\alpha)V(S) + \alpha(R+\gamma V(S')) S \leftarrow S' until S is terminal Until a certain criterion is satisfied ``` Table 7: TD(0) for estimating v_{π} . #### **TD** error • *TD error* - quantity in brackets in TD(0) update $$\delta_t := R_{t+1} + \gamma V_t(S_{t+1}) - V_t(S_t) \tag{22}$$ - difference between estimated value of S_t & better estimate $R_{t+1} + \gamma V(S_{t+1})$ - arise in various forms throughout RL - define modified TD error $$\delta'_{t} := R_{t+1} + \gamma V_{t+1}(S_{t+1}) - V_{t}(S_{t})$$ (23) #### Monte Carlo error - MC error - difference between return along path from t to terminal state & state-value function $$G_t - V_t(S_t) = \sum_{k=t}^{T-1} \gamma^{k-t} \delta_k' = \sum_{k=0}^{T-t-1} \gamma^k \delta_{k+t}'$$ (24) - can be expressed as sum of discounted (modified) one-step TD errors. - ullet assuming that every V_t does not change during episode - δ_t coincides with δ_t' - hence, (24) becomes $$G_t - V(S_t) = \sum_{k=t}^{T-1} \gamma^{k-t} \delta_k = \sum_{k=0}^{T-t-1} \gamma^k \delta_{k+t}.$$ (25) #### MC error - derivation #### MC error $$\begin{split} G_t - V_t(S_t) &= R_{t+1} + \gamma G_{t+1} - V_t(S_t) \\ &= R_{t+1} + \gamma \left(G_{t+1} - V_{t+1}(S_{t+1}) + V_{t+1}(S_{t+1}) \right) - V_t(S_t) \\ &= R_{t+1} + \gamma V_{t+1}(S_{t+1}) - V_t(S_t) + \gamma \left(G_{t+1} - V_{t+1}(S_{t+1}) \right) \\ &= \delta'_t + \gamma \left(G_{t+1} - V_{t+1}(S_{t+1}) \right) \\ &= \delta'_t + \gamma \delta'_{t+1} + \gamma^2 \left(G_{t+2} - V_{t+2}(S_{t+2}) \right) \\ &= \delta'_t + \gamma \delta'_{t+1} + \gamma^2 \delta'_{t+2} + \dots + \gamma^{T-t-2} \delta'_{T-2} + \gamma^{T-t-1} \left(G_{T-1} - V_{T-1}(S_{T-1}) \right) \\ &= \delta'_t + \gamma \delta'_{t+1} + \gamma^2 \delta'_{t+2} + \dots + \gamma^{T-t-2} \delta'_{T-2} + \gamma^{T-t-1} \left(R_T + \gamma V_T(S_T) - V_{T-1}(S_{T-1}) \right) \\ &= \delta'_t + \gamma \delta'_{t+1} + \gamma^2 \delta'_{t+2} + \dots + \gamma^{T-t-2} \delta'_{T-2} + \gamma^{T-t-1} \delta'_{T-1} \\ &= \sum_{k=t}^{T-1} \gamma^{k-t} \delta'_k = \sum_{k=0}^{T-t-1} \gamma^k \delta'_{k+t} \end{split}$$ where fact that state-value function for terminal state, $V_{T-1}(S_T)$, is 0 is used ## Sarsa - on-policy TD Control - (as in all on-policy methods) - continually estimate q_{π} for behavior policy π - (at the same time) change π toward greediness with respect to q_π - convergence properties depend on nature of policy's dependence on Q - examples of policies ϵ -greedy or ϵ -soft - ullet converges with probability 1 to an optimal policy & optimal action-value function as long as - all state-action pairs are visited infinite number of times - policy converges in the limit to greedy policy - algorithm is described in Table 8 # Algorithm - sarsa for estimating $Q \sim q_*$ ``` Algorithm parameters: step size \alpha \in (0,1] and small \epsilon > 0 Initialize: Q(s,a) \in \mathbf{R} for all s \in \mathcal{S} and a \in \mathcal{A}(s) except Q(\operatorname{terminal}, \cdot) = 0 Loop for each episode: Initialize S Choose A from S using policy derived from Q(e.g., \epsilon\text{-greedy}) Loop for each step of episode: Take action A, observe R, S' Choose A' from S' using policy derived from Q(e.g., \epsilon\text{-greedy}) Q(S,A) \leftarrow (1-\alpha)Q(S,A) + \alpha(R+\gamma Q(S',A')) S \leftarrow S', A \leftarrow A', until S is terminal Until a certain criterion is satisfied ``` Table 8: Sarsa (on-policy TD control) for estimating $Q \sim q_*$ ## Q-learning - off-policy TD control - development of off-policy TD control algorithm known as Q-learning (Watkins, 1989) one of early breakthroughs in RL - update defined by $$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left(R_{t+1} + \gamma \max_{a} Q(S_{t+1}, a) - Q(S_t, A_t) \right)$$ $$= (1 - \alpha)Q(S_t, A_t) + \alpha \left(R_{t+1} + \gamma \max_{a} Q(S_{t+1}, a) \right)$$ - ullet learned action-value function Q directly approximates optimal action-value function q_* , independent of policy being followed - dramatically simplifies analysis of algorithm & enabled early convergence proofs - ullet Q has been shown to converge with probability 1 to q_* - algorithm described in Table 9 # Algorithm - Q-learning for estimating $\pi \sim \pi_*$ ``` Algorithm parameters: step size \alpha \in (0,1] and small \epsilon > 0 Initialize: Q(s,a) \in \mathbf{R} for all s \in \mathcal{S} and a \in \mathcal{A}(s) except Q(\operatorname{terminal}, \cdot) = 0 Loop for each episode: Initialize S Loop for each step of episode: Choose A from S using policy derived from Q(e.g., \epsilon\text{-greedy}) Take action A, observe R, S' Q(S,A) \leftarrow (1-\alpha)Q(S,A) + \alpha(R+\gamma \max_{a \in \mathcal{A}(S')} Q(S',a)) S \leftarrow S' until S is terminal Until a certain criterion is satisfied ``` Table 9: Q-learning (off-policy TD control) for estimating $\pi \sim \pi_*$ **Modern Reinforcement Learning** ## Deep Q-learning revolution - problem with classical Q-learning - limited to small, discrete state spaces - Q-table becomes intractable for complex environments - cannot handle high-dimensional inputs, e.g., images, continuous states - deep Q-networks (DQN) - replace Q-table with deep neural network (DNN) - DNN approximates action-value function Q(s,a) - handle raw pixel inputs, continuous states - enables RL in complex environments, e.g., Atari games, robotics ## **DQN** architecture & key innovations - experience replay - store transitions (s, a, r, s') in replay buffer & sample mini-batches for training - break correlation between consecutive samples to improve data efficiency and stability - target network - separate target network for computing TD targets being updated periodically - reduce correlation between Q-values & targets to improve training stability - DQN loss function $$L(\theta) = \mathbf{E}((r + \gamma \max_{a'} Q(s', a'; \theta^{-}) - Q(s, a; \theta))^{2}$$ ## Policy gradient methods - limitations of value-based approaches - indirect policy optimization - difficulty with continuous action spaces - may not find stochastic optimal policies - policy gradient methods - direct policy optimization & natural handling of continuous actions - can learn stochastic policies & better convergence properties (in some cases) ## Policy gradient algorithm - merit cuntion $J(\theta) = \mathbf{E}(V(S_0)|\pi_{\theta}) = \mathbf{E}\left(\sum_{t=0}^{\infty} \gamma^t R_t | \pi_{\theta}\right)$ - maximization problem formulation $$\begin{array}{ll} \text{maximize} & J(\theta) \\ \text{subject to} & \theta \in \Theta \\ \end{array}$$ REINFORCE algorithm $$\theta^{k+1} = \theta^k + \alpha^k \nabla J(\theta^k)$$ where $$\nabla_{\theta} J(\theta) = \mathbf{E}(\nabla_{\theta} \log \pi(a|s;\theta) Q^{\pi}(s,a))$$ ## **Q-learning vs policy gradients** - Q-learning - does not always work - usually more sample-efficient (when it works) - challenge exploration - no guarantee for convergence - policy gradients - very general, but suffers from high variance - requires lots of samples - converges to local minima of $J(\theta)$ - challenge sample-efficiency AlphaGo & AlphaGo Zero Technologies #### **AlphaGo** - deep reinforcement learning with Monte Carlo tree search - trained on thousands of years of Go game history - AlphaGo Zero learns by playing against itself - development experience, insight, knowledge, know-how transferred to AlphaFold #### AlphaGo - hybrid approach - 2016 #### components - policy network predicts human expert moves - value network evaluates board positions - Monte Carlo tree search (MCTS) explores game tree - rollout policy fast playouts for MCTS - training process - supervised learning train policy network on human games - RL improve policy through self-play - regression train value network on self-play positions #### AlphaGo Zero - pure RL revolution - 2017 - breakthrough no human knowledge - learns from scratch through self-play, no human game data or handcrafted features - much stronger than original AlphaGo - simplified architecture - single neural network with two heads policy head $\pi(a|s)$ & value head v(s) - key innovations - residual NN enable very deep networks - MCTS with NN perfect integration - self-play curriculum gradually increasing difficulty Modern RL Applications & Industry Examples #### **Autonomous systems** - Waymo Google - RL for trajectory planning and decision making - Simulation-based training with millions of scenarios - Integration with traditional planning algorithms - Tesla Autopilot - RL for lane changes and complex driving scenarios - Real-world data collection and training # **Gaming & entertainment** - OpenAl Five for playing Dota 2 - complex multi-agent environment - long-term planning (45+ minute games) - DeepMind AlphaStar for playing StarCraft II - league-based training, population-based methods - partial observability challenges - human-level performance #### **Robotics** - Boston Dynamics - RL for dynamic locomotion - sim-to-real transfer - robust control policies - Covariant warehouse automation - RL for robotic picking and manipulation - real-world deployment in warehouses - continuous learning from experience ## Finance & trading - JP Morgan Chase - algorithmic trading with RL - portfolio optimization - risk management - Two Sigma, Renaissance Technologies - market making and execution - multi-agent trading environments #### RLHF - RL from human feedback - ChatGPT, GPT-4 training pipelines - supervised fine-tuning train on human demonstrations - reward model training learn human preferences - key components - reward model predicts human preferences - KL
penalty prevents deviation from original model - constitutional AI self-improvement through AI feedback # **Applications in LLMs** - OpenAI ChatGPT/GPT-4 - RLHF for helpful, harmless, honest responses - massive scale PPO training - human preference learning - Anthropic Claude - constitutional Al methods - self-supervised preference learning - scalable oversight techniques #### Classical to modern RL - key progressions - tabular o function approximation o DNN / model-free o model-based o hybrid - single agent \rightarrow multi-agent \rightarrow large-scale systems - core principles *intact* - exploration vs exploitation trade-off / Bellman equations & Bellman optimality - policy improvement & evaluation / generalized policy iteration (GPI) - modern additions - scale and compute power / human feedback integration - safety & robustness considerations / multi-modal and foundation models (e.g., LLM) # Recent Al Development # Notable recent AI research and new development • Claude 3.5 Sonnet Kolmogorov–Arnold networks (KAN) • JEPA (e.g., I-JEPA & V-JEPA) & consistency-diversity-realism trade-off # Claude 3.5 Sonnet #### Claude 3.5 Sonnet #### Anthropic - releases Claude 3.5 Sonnet (Jul-2024) - when! GPT-40 accepted to be default best model for many tasks, e.g., reasoning & summarization - claims Claude 3.5 Sonnet sets new industry standard for intelligence #### Main features & performance - Claude 3.5 Sonnet shows off - improved vision tasks, 2x speed (compared to GPT-4o), artifacts new UIs for, e.g., code generation & animation - with GPT-4o, Claude 3.5 Sonnet - wins at code generation - on par for logical reasoning - loses at logical reasoning - wins at generation speed | | Claude 3.5 | Claude 3 | GPT-4o | Gemini 1.5 | |---------------------------|------------|----------|--------|------------| | | Sonnet | Opus | | Pro | | visual math reasoning | 67.7% | 50.5% | 63.8% | 63.9% | | science diagrams | 94.7% | 88.1% | 94.2% | 94.4% | | visual question answering | 68.3% | 59.4% | 69.1% | 62.2% | | chart Q&A | 90.8% | 80.8% | 85.7% | 87.2% | | document visual Q&A | 95.2% | 89.3% | 92.8% | 93.1% | ## Kolmogorov-Arnold networks (KAN) - KAN: Kolmogorov-Arnold Networks MIT, CalTech, Northeastern Univ. & IAIFI - techniques - inspired by Kolmogorov-Arnold representation theorem every $f: \mathbb{R}^n \to \mathbb{R}$ can be written as finite composition of continuous functions of single variable, *i.e.* $$f(x) = \sum_{q=0}^{2n} \Phi_q \left(\sum_{p=1}^n \phi_{q,p}(x_p) \right)$$ where $\phi_{q,p}:[0,1]\to \mathbb{R}\ \&\ \Phi_q:\mathbb{R}\to \mathbb{R}$ - replace (fixed) activation functions with learnable functions - use B-splines for learnable (uni-variate) functions for flexibility & adaptability - advantages - benefits structure of MLP on outside & splines on inside - reduce complexity and # parameters to achieve accurate modeling - interpretable by its nature - better continual learning adapt to new data without forgetting thanks to local nature of spline functions # MLP vs KAN | Model | Multi-Layer Perceptron (MLP) | Kolmogorov-Arnold Network (KAN) | | | |----------------------|---|--|--|--| | Theorem | Universal Approximation Theorem | Kolmogorov-Arnold Representation Theorem | | | | Formula
(Shallow) | $f(\mathbf{x}) \approx \sum_{i=1}^{N(\epsilon)} a_i \sigma(\mathbf{w}_i \cdot \mathbf{x} + b_i)$ | $f(\mathbf{x}) = \sum_{q=1}^{2n+1} \Phi_q \left(\sum_{p=1}^n \phi_{q,p}(x_p) \right)$ | | | | Model
(Shallow) | fixed activation functions on nodes learnable weights on edges | (b) learnable activation functions on edges sum operation on nodes | | | | Formula
(Deep) | $\mathrm{MLP}(\mathbf{x}) = (\mathbf{W}_3 \circ \sigma_2 \circ \mathbf{W}_2 \circ \sigma_1 \circ \mathbf{W}_1)(\mathbf{x})$ | $\mathrm{KAN}(\mathbf{x}) = (\boldsymbol{\Phi}_3 \circ \boldsymbol{\Phi}_2 \circ \boldsymbol{\Phi}_1)(\mathbf{x})$ | | | | Model
(Deep) | (c) $\begin{array}{c c} W_3 \\ \hline \end{array}$ $\begin{array}{c c} W_2 \\ \hline \end{array}$ $\begin{array}{c c} W_2 \\ \hline \end{array}$ $\begin{array}{c c} Iinear, \\ learnable \\ X \end{array}$ | (d) Φ_3 Φ_2 $\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$ | | | # KAN architecture with spline parametrization unit layer #### Future work on KAN - natural question is - what if use both MLP and KAN? - what if use other types of splines? - how to control forgetfulness of continual learning? - why functions of one varible? possible to use functions of two variables? (figure created by DALLE-3) ## Joint-Embedding Predictive Architecture (JEPA) - Self-Supervised Learning from Images with a Joint-Embedding Predictive Architecture (JEPA) Yann LeCun et al. Jan-2023 - joint-embedding architecture (JEA) - output similar embeddings for compatible inputs x, y and dissimilar embeddings for incompatible inputs - generative architecture - directly reconstruct signal y from compatible signal x using decoder network conditioned on additional variables z to facilitate reconstruction - joint-embedding predictive architecture (JEPA) - similar to generative architecture, but comparison is done in embedding space - e.g., I-JEPA learns y (masked portion) from x (unmasked portion) conditioned on z (position of mask) #### **Learning semantic representation better** #### I-JEPA - predicts missing information in abstract representation space - e.g., given single context block (unmasked part of the image), predict representations of various target blocks (masked regions of same image) where target representations computed by learned target-encoder - generates semantic representations (not pixel-wise information) potentially eliminating unnecessary pixel-level details & allowing model to concentrate on learning more semantic features # I-JEPA outperforms other algorithms | Method | Arch. | CIFAR100 | Places205 | iNat18 | | | |---|----------|----------|-----------|--------|--|--| | Methods without view data augmentations | | | | | | | | data2vec [8] | ViT-L/16 | 81.6 | 54.6 | 28.1 | | | | MAE [36] | ViT-H/14 | 77.3 | 55.0 | 32.9 | | | | I-JEPA | ViT-H/14 | 87.5 | 58.4 | 47.6 | | | | Methods using extra view data augmentations | | | | | | | | DINO [18] | ViT-B/8 | 84.9 | 57.9 | 55.9 | | | | iBOT [79] | ViT-L/16 | 88.3 | 60.4 | 57.3 | | | | Method | Arch. | Clevr/Count | Clevr/Dist | | | | |---|----------|-------------|------------|--|--|--| | Methods without view data augmentations | | | | | | | | data2vec [8] | ViT-L/16 | 85.3 | 71.3 | | | | | MAE [36] | ViT-H/14 | 90.5 | 72.4 | | | | | I-JEPA | ViT-H/14 | 86.7 | 72.4 | | | | | Methods using extra data augmentations | | | | | | | | DINO [18] | ViT-B/8 | 86.6 | 53.4 | | | | | iBOT [79] | ViT-L/16 | 85.7 | 62.8 | | | | #### **V-JEPA** - Revisiting Feature Prediction for Learning Visual Representations from Video Yann LeCun et al. - Feb-2024 - essentially same ideas of JEPA loss function is calculated in embedding space for better semantic representation learning (rather than pixel-wise learning) #### More realistic generative model becomes, less diverse it becomes - Consistency-diversity-realism Pareto fronts of conditional image generative models -FAIR at Meta - Montreal, Paris & New York City labs, McGill University, Mila, Quebec Al institute, Canada CIFAR AI - Jun-2024 - realism comes at the cost of coverage, *i.e.*, the most realistic systems are mode-collapsed! - intuition (or hunch) - world models should not be generative should make predictions in representation space - in representation space, unpredictable or irrelevant information is absent - \rightarrow main argument in favor of JEPA # Consistency-diversity-realism trade-off # References #### References - [ACH⁺24] Pietro Astolfi, Marlene Careil, Melissa Hall, Oscar Mañas, Matthew Muckley, Jakob Verbeek, Adriana Romero Soriano, and Michal Drozdzal. Consistency-diversity-realism pareto fronts of conditional image generative models, 2024. - [ADM⁺23] Mahmoud Assran, Quentin Duval, Ishan Misra, Piotr Bojanowski, Pascal Vincent, Michael Rabbat, Yann LeCun, and Nicolas Ballas. Self-supervised learning from images with a joint-embedding predictive architecture, 2023. - [BGP⁺24] Adrien Bardes, Quentin Garrido, Jean Ponce, Xinlei Chen, Michael Rabbat, Yann LeCun, Mahmoud Assran, and Nicolas Ballas. Revisiting feature prediction for learning visual representations from video, 2024. - [Bis06] Christopher M. Bishop. Pattern Recognition and Machine Learning (Information Science and Statistics). Springer-Verlag, Berlin, Heidelberg, 2006. - [BV04] Stephen Boyd and Lieven Vandenberghe. *Convex Optimization*. Cambridge University Press, New York, NY, USA, 2004. [GBC16] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. *Deep Learning*. The MIT Press, 2016. - [HTF01] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. *The Elements of Statistical Learning: Data Mining, Inference, and Prediction*. Springer, 2001. - [KF09] Daphne Koller and Nir Friedman. *Probabilistic Graphical Models: Principles and Techniques Adaptive Computation and Machine Learning*. The MIT Press, 2009. - [LG94] Alberto Leon-Garcia. *Probability and Random Processes for Electrical Engineering*. Addison-Wesley, 2nd edition, 1994. - [LWV⁺24] Ziming Liu, Yixuan Wang, Sachin Vaidya, Fabian Ruehle, James Halverson, Marin Soljačić, Thomas Y. Hou, and Max Tegmark. KAN: Kolmogorov-arnold networks, 2024. - [Mur12] Kevin P. Murphy. *Machine Learning: A Probabilistic Perspective*. The MIT Press, 2012. - [SB18] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. Bradford Books, 2nd
edition, 2018.