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Today

e convex optimization (cvx opt) & machine learning
— cvx opt definition

— dual problem w/ examples & weak/strong dualities
— KKT & complementary slackness

e distributed learning via alternating direction method of multipliers (ADMM)
— dual decomposition & method of multipliers
— ADMM definition & convergence

— examples: constrained opt, consensus opt, consensus SVM, distributed lasso

® conclusions
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Convex optimization

e many (supervised) machine learning (ML) depend on convex optimization (inherently)

e one of few optimization class that can be actually solved

e many engineering and scientific problems can be cast into convex optimization problems

® many more can be approximated by convex optimization

e convex optimization sheds lights on intrinsic property and structure of ML algorithms
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Mathematical optimization

e mathematical optimization problem:

minimize  fo(x)
subject to  fi(z) <0, ¢

-z =] m T }T € R" is the (vector)

— fo : R™ — R is the objective function

|
[ —

optimization variable

— fi; : R™ — R are the inequality constraint functions

— h; : R" — R are the equality constraint functions
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Optimization examples

® circuit optimization

— optimization variables: transistor widths, resistances, capacitances, inductances
— objective: operating speed (or equivalently, maximum delay)

— constraints: area, power consumption
e portfolio optimization

— optimization variables: amounts invested in different assets

— objective: expected return

— constraints: budget, overall risk, return variance
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Optimization example - deep neural network (DNN)

e machine learning

— optimization

variables:

functions, number of layers
— objective: loss function, e.g., sum of squares of errors
— constraints: network architecture, e.g., fully-connected, transformer

Input
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Convex optimization

e canonical form:
minimize  fo(x)
subject to  fi(z) <k, 0, i=1,...,m
Ax = b
where

— fodx+ (1 —=Ny) < Afo(z)+ (1 =) fo(y) forallz,y € R""and 0 < A < 1
- fi:R" — RFi are K ;-convex w.r.t. proper cone K; C RFi

— all equality constraints are linear
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Convex optimization

e algorithms

— classical algorithms like simplex method still work well for many LPs

— many state-of-the-art algorithms develoled for (even) large-scale convex optimization
problems

* barrier methods

x primal-dual interior-point methods

e applications

— many engineering and scientific problems are (or can be cast into) convex
optimization problems

— statistical parameter estimation, ML, signal processing, (variational) Bayesian
inference, bioinformatics, chemical engineering, mechanical engineering
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Why is convex optimization impactful?

e which one of these problems are easier to solve?

— (generalized) geometric program with n = 1, 000, 000 variables and m = 1, 000
constraints

. PO 80,i,1 B0.i,n
minimize 21 0Ty R 2
: Pj Pji1 Bjin .
subject to > .7, a7 R <1l,757=1,...,m

with Qg > 0 and Bj,z',k: €R
=> can be solved globally in your laptop computer
— minimization of 10th order polynomial of n = 20 variables with no constraint

C . 10 10 ‘ G in
minimize Zil:l Tt Zinzl Ciq,...,inLy1 "Ly

with Ciq,...rin €R
= you cannot solve!
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Convex optimization example - SVM*

e problem definition:
— given z'¥ € R?: input data, and ¥ € {—1,1}: output labels

— find hyperplane which separates two different classes as distinctively as possible (in
some measure)

e (typical) formulation:

minimize  ||a||3 + v Do, w
subject to y(i)(aTa:(i) +b)>1—wu, t=1,...,m
u >0

— convex optimization problem, hence stable and efficient algorithms exist even for
very large problems

— has worked extremely well in practice

SNU cryptography seminar: cvx opt & distributed learning via ADMM 10



Sunghee Yun Feb 02, 2024

Duality

every (constrained) optimization problem has a dual problem (whether or not it's a
convex optimization problem)

every dual problem is a convex optimization problem (whether or not it's a convex
optimization problem)

duality provides optimality certificate, hence plays central role for modern optimization
and machine learning algorithm implementation

duality produces beautiful interpretations, e.g.,

— entropy maximization is dual of (transformed) geometric program
— exchange problem is dual of consensus problem
— quadratic program is dual of support vector machine (SVM)

(usually) solving one readily solves the other!
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Lagrangian®

e standard form problem:

minimize  fo(x)
subject to fi(x) <0, i=1,...,m

I
[
iS)

where x € R" is optimization variable, D is domain, p* is optimal value
e Lagrangian: L : R" X R™ X R” — R with dom L = D x R™ x R? defined by

L(m7 >‘7 V) — fO(x) + Z Azfz(x) -+ Z Vih’i(aj)

— \;: Lagrange multiplier associated with f;(x) < 0
— v;: Lagrange multiplier associated with h;(z) = 0
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Lagrange dual function®

e Lagrange dual function: g : R™ X R? — R defined by

g(>‘7 V) — xlIgllf;L(CC, )‘7 V) — ;«21% <f0($) + Z Alfz(x) + Z Vihi(x))
1=1 1=1

— g is always concave
— g(A, V) can be —o0
e lower bound property: if A > 0, then g(\,v) < p*
Proof: If & is feasible and A > 0, then fo(z) > L(z,\,v) >

infyep L(x, \,v) = g(A,v). Thus,
k — . >
p- = inf fo(z) 2 g(A,v)

where F = {z | fi(x) < 0forl1 <i<m, hj(z) =0forl1l <j <p}
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Dual problem

e Lagrange dual problem:
maximize  g(\, v)
subjectto A >~ 0
— very good lower bound on p* (obtained from Lagrange dual function)
— is a convex optimization problem
— optimal value denoted by d*
— M\, v are calle dual feasible it A > 0

e example: standard form LP and its dual

minimize ¢’z maximize —blv
subjectto Ax = b subject to ATv 4+c¢ >0
x>~ 0
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Weak duality

e weak duality implies d* < p*
— always true (by construction of dual problem)

— provides nontrivial lower bounds, especially, for difficult problems, e.g., solving the
following SDP:
maximize —17v
subject to W 4 diag(v) =~ 0

gives a lower bound for max-cut problem

minimize W
subjectto =z =1, t=1,...,n
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Strong duality

*

e strong duality implies d* = p

— not necessarily hold; does not hold in general

— wusually holds for convex optimization problems

— conditions which guarantee strong duality in convex problems called constraint
qualifications
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Slater’s constraint qualification*

e strong duality holds for a convex optimization problem:
minimize  fo(x)
subject to  fi(x) <0, i=1,...,m
Ax =0
— if it is strictly feasible, i.e., there exists x € R™ such that

filx) <0,i=1,...,m, Az =b

e Slater’'s condition

— also guarantees the dual optimum is attained (if p* > —o0)

— linear inequalities do not need to hold with strict inequalities
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Duality example: LP

e primal problem:
T

minimize cx
subjectto Ax <Xb

e dual function:

— 00 otherwise

Feb 02, 2024

T T . T o
g(A):inf<(c_|_AT)\> x—bT)\>:{ b\ ifA'XAN+c=0

e dual problem:

maximize —b’ \
subject to AT N+ c=0
A>=0

— Slater’s condition implies that p* = d* if AZ < b for some &
— truth is, p* = d" except when both primal and dual are infeasible
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Duality example: QP*

e primal problem (assuming P € S" _):

minimize ! Px
subjectto Ax <X b

e dual function:
1
g(A) = inf (acTP:I: + 2T (Az — b)) = —ATAPTIATA — b7

e dual problem:
maximize —A AP 1ATA/4 — b1\
subjectto A >~ 0

— Slater’s condition implies that p* = d* if AZ < b for some &
— truth is, p* = d* always!
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Complementary slackness”

e assume strong dualtiy holds, =" is primal optimal, and (A™, v™) is dual optimal
m p

fo(z") = g(\",v") = inf (fo(w) +D A fil@m) + > v;khz-(w))
i=1 i=1

< fo(z) + DN Ffi(z") + D vihi(a")
1=1 1=1

< fo(z")
e thus, all inequalities are tight, i.e., they hold with equalities

— x™ minimizes L(xz, \*, V™)
— A fi(z™) = 0 for all ¢, known as complementary slackness
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Karush-Kuhn-Tucker (KKT) conditions*

e KKT (optimality) conditions consist of
— primal feasibility: f;(x) < Oforall1 < i< m, hj(xz) =0forall 1 <i<p
— dual feasibility: A >~ 0
— complementary slackness: \;f;(x) = 0

— zero gradient of Lagrangian: V fo(z) + >_." MV fi(z) + >0, vsVhi(z) =0

e if strong daulity holds and =™, A\*, and v™ are optimal, they satisfy KKT condtions!
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KKT conditions for convex optimization problem*
e ifZ, \, and U satisfy KKT for convex optimization problem, then they are optimal!
— complementary slackness implies fo(%) = L(&, X, D)
— last conidtion together with convexity implies 9(5\, v) = L(z, X, D)

e thus, for example, if Slater's condition is satisfied, x is optimal if and only if there exist
A, v that satisfy KKT conditions

— Slater’s condition implies strong dualtiy, hence dual optimum is attained

— this generalizes optimality condition V fo(x) = 0 for unconstrained problem
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Alternating Direction Method of Multipliers (ADMM)

REFERENCE:
S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein
Distributed optimization and statistical learning via the alternating direction method of
multipliers
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What is ADMM for?

e ADMM is for

— ML with huge data sets

— distributed optimization where

— MANY local agents solving large problem by iteratively solving small problems while
being coordinated by ONE central agent
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Dual ascent method

e consider convex equality-constrained optimization problem:

minimize  f(x)
subjectto Ax = b

o Lagrangian defined by L(z,y) = f(z) + y' (Az — b)
e dual function defined by

g(y) = inf L(z,y) = — Sgp((—ATy>Taj —flx) —by=—f(—A"y)—b'y

e dual probem defined by
maximize g(y)
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Dual ascent method

e gradient method for dual problem:

Y =" + " Vg(y")

where Vg(y) = AZ — b with £ = argmin_, L(x, y)
e this fact induces the following dual ascent method:
"= argmin L(x, yk)

yk—l—l L yk + (){k(ACEk+1 . b)

— consists of two stes; x-minimization and dual update
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Dual decomposition

® suppose that f is separable in x1, ..., Ty, t.e.,
f(z) = fi(z1) + -+ fy(zn)

T
where x = [ ry -+ IN ]
e then, L is separable, too, since

N N N
L(z,y) = > filz)+y | D Amwi—b) => (filwi)+y Amw;) —b'y
=1 1=1 1=1

e thus, z-minimization step splits into /N separate minimizations:

T = argmin L;(x;, yk) = argmin(fi(z;) + yTAixi)

Ty Zq

e parallelism can be employed!
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Method of multipliers

e dual ascent fails, e.g., when f is an affine function in x!

e one solution: augmented Lagrangian

Ly(z,y) = f(z) +y' (Az —b) + (p/2)|| Az — b]|3

e method of multipliers:
"1 .= argmin L,(x, y")
xr

y' =y 4 (At = b)
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Optimality condition*

e optimality conditions: Az* — b =0, Vf(z*) + Aly* =0

o 2"t minimizes L .(x. y" . hence
o\ Ty Y

0 = VmLp(:UkH, yk)
= Vof(@") + AT+ p(Az" — b))

e thus, dual feasibility achieved!

e primal feasibility achieved in limit: limy_, Azl =
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Pros and cons of method of multipliers

e pros: it works even for nondifferentiable or affine f possibly with +o00 value

e cons: the penalty term deprives it of its capability of parallelism!
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ADMM

e ADMM

— retains the robustness of method of multipliers
x can deal with nondifferentiable f
* can deal with affine f
* can deal with f with +o00 value

— supports decomposition, hence parallelism

e also called “robust dual decomposition” or “decomposable method of multipliers”
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ADMM formulation and algorithm

e ADMM formulation:
minimize  f(x) + g(2)
subject to Ax + Bz = c

where f and g convex

e then, augmented Lagrangian defined by

Ly(z,2,y) = f(z) + g(2) + y (Az + Bz —¢) + (p/2)||Az + Bz — |

e finally, ADMM steps:
"= argmin, L,(z, 2", y")

"1 .= argmin, L,(z" ", 2, y")

L ok 4 p(Adtt 4 B2 — )

T-minimization: x
z-minimization: 2z
dual update: Y
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Optimality conditions*

e optimality conditions

primal feasibility: Ax + Bz —c =0
dual feasibility: Vi(x)+ ATy =0, Vg(z) + By =0

k+1 k+1

® since z minimizes L,(z"" ", z,y"),

Vg(z"™) + BY (" + p(Az" 4+ B2" — )
vg(zk‘—l—l) _|_ BTyk—l—l

k+1

— thus, (2Tt 2Pt gt

) satisfies the second dual feasibility condition!

e primal feasibility and the first dual feasibility are achieved as kK — oo
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ADMM in scaled form*

e rewrite augmented Lagrangian with r = Ax + Bz — cand u = (1/p)y:

Ly(z,z,y) = f(z)+g(z) +y" (Az + Bz —c) + (p/2)||Az + Bz — ¢|;
f(x) +9(2) + (p/2)(Irllz + (2/p)y" )

f(2) +g(2) + (p/2)(|Ir + (1/p)yllz — [1(1/p)yll3)

f(x) +9(2) + (p/2)[|Az + Bz — ¢ + ull; = (p/2)]|ull2

e ADMM in scaled form: (with v* := (1/p)y")

z-minimization: z"t! := argmin_ (f(z) + (p/2)||Az + Bz" — ¢ + u"||2)
z-minimization:  2*T! := argmin_(g(2) + (p/2)||Az*t' + Bz — c + u"||3)
dual update: W= uF 4 (Axkﬂr1 1L Bkt c)

e Note that u* = % + Zle r* with r* = Az* + Bz — ¢
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Convergence

e assuming that
— f and g are convex, closed, proper, i.c.,

{(z,t) e R" xR f(z) < t}, {(2,t) ER" X R | g(z) <t}

are closed, nonempty, convex sets
— L has a saddle point, i.e., existence of (™, z*, y™) such that

LO(x*7 Z*ay) S LO(x*a Z*a y*) S LO(xa < y*)

holds for all x, z, y
e ADMM converges:

— jterates approach feasibility: Az* + Bz¥ — ¢ — 0
— objective approaches optimal value: f(z*) 4+ g(z*) — p*
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Related algorithms™

e Douglas, Peaceman, Rachford, Lions, Mercier: operator spliting methods (1950s, 1979)
e Rockafellar: proximal point algorithm (1976)

e Dykstra's alternating projections algorithm (1983)

e Spingarn’'s method of partial inverses (1985)

e Rockafellar-Wets progressive hedging (1991)

e Rockafellar, et al.: proximal methods (1976—Present)

e Bregman iterative methods (2008—Present)
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Common patterns

e x-update step requires minimizing

f (@) + (p/2)|| Az + "I
where v* = BzF — ¢ -+ u”
® z-update step requires minimizing
9(2) + (p/2)|| Bz + w"|;

where w* = AzFt — ¢ + ¥

e a few special cases enable the simplification of these updates (by exploting special
structures)
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Decomposition

® suppose
— f is block-separable:

f(x) = fiz1) + -+ fn(zN)

— A comformably block separable, i.e., AT A is block diagonal

AT _A’{Al 79 0
ATa=| (A oAy )=| 0 R0

AT : : . :

N |0 0 o ANAN

e then, x-update splits into N parallel updates of x;

e the very same thing can be applied to z-udpate
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Proximal operator”®

e when A = I, xz-update becomes

z* = argmin (f(z) + (p/2)]l& — v[l}) = prox(v)
x e
e furthermore,
— if f = I¢, id.e., f is indicator function of C' C R", then

=T (v),

i.e., projection onto C.
— if f = A|| - ||1, i.e., fis I3 norm, then

ac:_ = Sx/p(vi),

i.e., soft thresholding where S,(v) = (v —a)y — (—v — a)+

SNU cryptography seminar: cvx opt & distributed learning via ADMM
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Quadratic objective function*

o assume f(x) = (1/2)a’ Px + ¢’z 4+ r

e then, x-update becomes

T = argmin ((I/Z)xTP.ﬂU +q'z4+r+(p/2)||Az — ’UH%)
= (P+pA"A) " (pATv - q)
e matrix inversion lemma implies

(P4 pAT A =P — pP AT (T + pAP AT AP

e if direct method is used, cache factorization of P + pAY A or I, pAP ' A" cen save
tremendous of computation efforts
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Solutions for general objective functions

e if f is smooth,
e standard methods can be used:

— Newton’s method, gradient method, quasi-Newton's method

— preconditioned CG, limited-memory BFGS (scale to very large problems)
e other techniques:
— warm start

— early stopping with variant (or adaptive) tolerances as algorithm proceeds
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Constrained optimization

® generic constrained optimization:

minimize  f(x)
subjectto «x € C

e ADMM form:
minimize  f(x) + g(2)
subjectto = — 2z =20
where g(z) = I¢(2)
e then, ADMM iterations become:

. 2
"t .= argmin, (f(fB) + (p/2) ||z — 2"+ uk\|2)
P P C

B i g 8
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Lasso formulation

e problem formulation:

minimize (1/2)||Az — b||§ + Al|x]|1

e ADMM form:
minimize  (1/2)||Ax — ng-l—)\HZHl

subjectto x*x — 2z =0

e ADMM iterations:

A (ATA + ,oI)_1 (ATb + pzt — yk)
S S Sx/p (xk—i—l 4 yk/p)
yHL = P (wkﬂ . Zk+1)
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Lasso computational example

e for dense A € R?P00x5000 ;o 5000 predictors and 1500 measurements

e computation efforts:

— 1.32 seconds for factorization

— 0.03 seconds for ADMM iterations

— 2.97 seconds for lasso solve

— 4.45 seconds for full regularization path, e.g., 30 As

e only takes short sciprt
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Sparse inverse covariance selection (SICS)*

e S: empirical covariance of samples from A (0, ), with 27! sparse, e.¢., Gaussian
Markov random field

e estimate X' via [; regularized maximum likelihood:

minimize Tr(SX) — logdet X 4+ \||X||;

e methods: COVSEL (Banerjee et al 2008) or graphical lasso (Friedman, Hastie, and
Tibshirani, 2007)
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SICS via ADMM*

e SICS problem:

minimize Tr(SX) — logdet X + \|| X||1

e ADMM form:
minimize  Tr(SX) — logdet X + \||Z||:

subjectto X —Z =0
e ADMM iterations:

XM = argminy (Tr(SX) — logdet X + (p/2)||X — Z* + U*||3)
Zk‘—i—l — S)\/p (Xk‘-l-l _|_ Uk:)
Uk+1 — Uk + (Xk+1 . Zk—l—l)
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Solution for X-update*

e cigenvalue decomposition:

p(Z" —U") — 8 =QAQ"

e diagonal matrix forming:

% _)\i—|—\/)\?—|—4p

i = 2

e then, X-udpate can be achieved by
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SICS example

o for X1 ¢ RIVOOXI0000 \\ith 10000 nonzero entries

e ADMM takes 3—10 minutes

e for comparision,
— COVSEL takes > 25 minutes when 27! is 400 x 400 tridiagonal matrix
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Consensus optimization (CO)

e sum of NN functions as objective

minimize Zfll fi(x)
— for example, f; could be the loss function of ith training data block

e ADMM form:
minimize Zf\il fi(x;)
subjectto x; — 2z =0
— x; Is t¢th local variable
— z is the global variable
— x; — z = 0 are consistency or consensus constraints
— regularization can be added via g(z)
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CO using ADMM

e lLagrangian:

N

Loz, 2,y) = > (Filw:) + ] (@i = 2) + (p/2) i — 2113)
=1
e ADMM iterations:
k+1 : kT 2
i = argmin (filz) +ul (@ - 2) + (0/2) |2 — 2]13)

N
AR %Z(kH—F(I/P)’yf)

k+1 k+1 k+1
yi o=y e = 2

1
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Consensus classification

e given data set, (a;,b;), i =1,..., N wherea; € R", b; € {—1,1}
e linear classifier sign(a’ w + v) with (vector) weight or support vector w, offset v
e margin for ith data is b;(a; w + v)

e loss for ith data is l(b,-(afw + v)) where [ is loss function, e.g., hinge, logistic,
probit, exponential, etc.

e choose w, v so as to minimize

% ; l(bi(a] w+v)) + r(w)

— r(w) is regularization term, e.g., l2, 1, 1,, etc.

e split data and use ADMM consensus to solve the optimization problem
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Consensus SVM example

e hinge loss I[(u) = (I — w)+ with Iy regularization

e toy problem with n = 2, N = 400 to illustrate

e data split into 20 groups, in worst possible way: each group contains only positive or
negative data
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The 1st Epoch
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The 5th Epoch
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The 40th Epoch
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Distributed lasso

e example with dense A € R™*" where m = 400, 000 and n = 8, 000
— distributed solver written in C using MPIl and GSL
— no optimization or tuned libraries (like ATLAS, MKL)

— split into 80 subsystems across 10 (8-core) machines

e computation efforts:
— 30 seconds for loading data
— b5 seconds for factorization
— 2 seconds for subsequent ADMM iterations

— 6 seconds for lasso solve (~ 15 ADMM iterations)
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Exchange problem*

e typical problem formulation:

minimize Zﬁl fi(xi)
subject to Zi\il x; =0

— dual of consensus
— constraint is called equilibrium or market clearing constraint
e one interpretation: IN agents exchanging n items so as to minimize total cost
— (z;); > 0 & agent @ receives (x;); of item j from exchange
— (xi); < 0 < agent ¢ contributes —(x;); of item j to exchange
e duality interpretation:

— 4™, i.e., optimal dual variable, can be interpreted as valid prices for items
— real (or virtual) cash payment (y*)’x; by agent i
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ADMM conclusions

e ADMM

— provides single algorithm framework competitive with special algorithms
— induces systematic distributed algorithms with convergence proof

— whereas all federated learning based on (asynchronous) update does not provide
systematic learning

— can be easily applied to non-convex cases
e the underlying idea can be used for many ML areas

— computer vision (CV), natural language processing (NLP), classical statistical
learning
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