
SNU Cryptography Seminar:
Convex Optimization & Distributed Learning via

Alternating Direction Method of Multipliers

Sunghee Yun

VP, AI Technology & Product Strategy

Erudio Bio, Inc.



Sunghee Yun Feb 02, 2024

About the Speaker

• VP, AI Technology & Product Strategy @ Erudio Bio, Inc.

• Advisory Professor, Electrical Engineering and Computer Science @ DGIST

• Adjunct Professor, Electronic Engineering Department @ Sogang University

• Technology Consultant @ Gerson Lehrman Gruop (GLG), NYC

• CTO & Chief Applied Scientist - Senior Fellow @ Gauss Labs Inc. ∼ 2023

• Senior Applied Scientist @ Amazon.com, Inc. ∼ 2020

• Principal Engineer @ Software R&D Center of Samsung DS Division ∼ 2017

• Principal Engineer @ Strategic Marketing Team of Memory Business Unit ∼ 2016

• Principal Engineer @ Memory Design Technology Team of DRAM Development Lab. ∼ 2015

• Senior Engineer @ CAE Team of Samsung Semiconductor ∼ 2012

• M.S. & Ph.D. - Electrical Engineering (EE) @ Stanford University ∼ 2004

• B.S. - Electrical Engineering (EE) @ Seoul National University ∼ 1998

SNU cryptography seminar: cvx opt & distributed learning via ADMM 1



Sunghee Yun Feb 02, 2024

Today

• convex optimization (cvx opt) & machine learning

– cvx opt definition

– dual problem w/ examples & weak/strong dualities

– KKT & complementary slackness

• distributed learning via alternating direction method of multipliers (ADMM)

– dual decomposition & method of multipliers

– ADMM definition & convergence

– examples: constrained opt, consensus opt, consensus SVM, distributed lasso

• conclusions
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Convex optimization

• many (supervised) machine learning (ML) depend on convex optimization (inherently)

• one of few optimization class that can be actually solved

• many engineering and scientific problems can be cast into convex optimization problems

• many more can be approximated by convex optimization

• convex optimization sheds lights on intrinsic property and structure of ML algorithms
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Mathematical optimization

• mathematical optimization problem:

minimize f0(x)

subject to fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p

– x =
[
x1 · · · xn

]T ∈ Rn is the (vector) optimization variable

– f0 : Rn → R is the objective function

– fi : Rn → R are the inequality constraint functions

– hi : Rn → R are the equality constraint functions
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Optimization examples

• circuit optimization

– optimization variables: transistor widths, resistances, capacitances, inductances

– objective: operating speed (or equivalently, maximum delay)

– constraints: area, power consumption

• portfolio optimization

– optimization variables: amounts invested in different assets

– objective: expected return

– constraints: budget, overall risk, return variance
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Optimization example - deep neural network (DNN)

• machine learning

– optimization variables: model parameters, e.g., connection weights, activation

functions, number of layers

– objective: loss function, e.g., sum of squares of errors

– constraints: network architecture, e.g., fully-connected, transformer
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Convex optimization

• canonical form:
minimize f0(x)

subject to fi(x) �Ki 0, i = 1, . . . ,m

Ax = b

where

– f0(λx+ (1−λ)y) ≤ λf0(x) + (1−λ)f0(y) for all x, y ∈ Rn and 0 ≤ λ ≤ 1

– fi : Rn → Rki are Ki-convex w.r.t. proper cone Ki ⊆ Rki

– all equality constraints are linear
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Convex optimization

• algorithms

– classical algorithms like simplex method still work well for many LPs

– many state-of-the-art algorithms develoled for (even) large-scale convex optimization

problems

∗ barrier methods

∗ primal-dual interior-point methods

• applications

– many engineering and scientific problems are (or can be cast into) convex

optimization problems

– statistical parameter estimation, ML, signal processing, (variational) Bayesian

inference, bioinformatics, chemical engineering, mechanical engineering
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Why is convex optimization impactful?

• which one of these problems are easier to solve?

– (generalized) geometric program with n = 1, 000, 000 variables and m = 1, 000

constraints

minimize
∑p0

i=1 α0,ix
β0,i,1
1 · · · x

β0,i,n
n

subject to
∑pj

i=1 αj,ix
βj,i,1
1 · · · x

βj,i,n
n ≤ 1, j = 1, . . . ,m

with αj,i ≥ 0 and βj,i,k ∈ R
⇒ can be solved globally in your laptop computer

– minimization of 10th order polynomial of n = 20 variables with no constraint

minimize
∑10

i1=1 · · ·
∑10

in=1 ci1,...,inx
i1
1 · · · x

in
n

with ci1,...,in ∈ R
⇒ you cannot solve!
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Convex optimization example - SVM∗

• problem definition:

– given x(i) ∈ Rp: input data, and y(i) ∈ {−1, 1}: output labels

– find hyperplane which separates two different classes as distinctively as possible (in

some measure)

• (typical) formulation:

minimize ‖a‖2
2 + γ

∑m
i=1 ui

subject to y(i)(aTx(i) + b) ≥ 1− ui, i = 1, . . . ,m

u � 0

– convex optimization problem, hence stable and efficient algorithms exist even for

very large problems

– has worked extremely well in practice
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Duality

• every (constrained) optimization problem has a dual problem (whether or not it’s a

convex optimization problem)

• every dual problem is a convex optimization problem (whether or not it’s a convex

optimization problem)

• duality provides optimality certificate, hence plays central role for modern optimization

and machine learning algorithm implementation

• duality produces beautiful interpretations, e.g.,

– entropy maximization is dual of (transformed) geometric program

– exchange problem is dual of consensus problem

– quadratic program is dual of support vector machine (SVM)

• (usually) solving one readily solves the other!
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Lagrangian∗

• standard form problem:

minimize f0(x)

subject to fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p

where x ∈ Rn is optimization variable, D is domain, p∗ is optimal value

• Lagrangian: L : Rn × Rm × Rp → R with domL = D × Rm × Rp defined by

L(x, λ, ν) = f0(x) +
m∑
i=1

λifi(x) +

p∑
i=1

νihi(x)

– λi: Lagrange multiplier associated with fi(x) ≤ 0

– νi: Lagrange multiplier associated with hi(x) = 0
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Lagrange dual function∗

• Lagrange dual function: g : Rm × Rp → R defined by

g(λ, ν) = inf
x∈D

L(x, λ, ν) = inf
x∈D

(
f0(x) +

m∑
i=1

λifi(x) +

p∑
i=1

νihi(x)

)

– g is always concave

– g(λ, ν) can be −∞
• lower bound property: if λ � 0, then g(λ, ν) ≤ p∗

Proof : If x̃ is feasible and λ � 0, then f0(x̃) ≥ L(x̃, λ, ν) ≥
infx∈D L(x, λ, ν) = g(λ, ν). Thus,

p
∗

= inf
x∈F

f0(x) ≥ g(λ, ν)

where F = {x | fi(x) ≤ 0 for 1 ≤ i ≤ m, hj(x) = 0 for 1 ≤ j ≤ p}.
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Dual problem

• Lagrange dual problem:
maximize g(λ, ν)

subject to λ � 0

– very good lower bound on p∗ (obtained from Lagrange dual function)

– is a convex optimization problem

– optimal value denoted by d∗

– λ, ν are calle dual feasible if λ � 0

• example: standard form LP and its dual

minimize cTx maximize −bTν
subject to Ax = b subject to ATν + c � 0

x � 0
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Weak duality

• weak duality implies d∗ ≤ p∗

– always true (by construction of dual problem)

– provides nontrivial lower bounds, especially, for difficult problems, e.g., solving the

following SDP:
maximize −1Tν
subject to W + diag(ν) � 0

gives a lower bound for max-cut problem

minimize xTWx

subject to x2
i = 1, i = 1, . . . , n
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Strong duality

• strong duality implies d∗ = p∗

– not necessarily hold; does not hold in general

– usually holds for convex optimization problems

– conditions which guarantee strong duality in convex problems called constraint

qualifications
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Slater’s constraint qualification∗

• strong duality holds for a convex optimization problem:

minimize f0(x)

subject to fi(x) ≤ 0, i = 1, . . . ,m

Ax = b

– if it is strictly feasible, i.e., there exists x ∈ Rn such that

fi(x) < 0, i = 1, . . . ,m, Ax = b

• Slater’s condition

– also guarantees the dual optimum is attained (if p∗ > −∞)

– linear inequalities do not need to hold with strict inequalities
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Duality example: LP

• primal problem:
minimize cTx

subject to Ax � b
• dual function:

g(λ) = inf
x

((
c+ A

T
λ
)T
x− bTλ

)
=

{
−bTλ if ATλ+ c = 0

−∞ otherwise

• dual problem:
maximize −bTλ
subject to ATλ+ c = 0

λ � 0

– Slater’s condition implies that p∗ = d∗ if Ax̃ ≺ b for some x̃

– truth is, p∗ = d∗ except when both primal and dual are infeasible
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Duality example: QP∗

• primal problem (assuming P ∈ Sn++):

minimize xTPx

subject to Ax � b

• dual function:

g(λ) = inf
x

(
x
T
Px+ λ

T
(Ax− b)

)
= −

1

4
λ
T
AP

−1
A
T
λ− bTλ

• dual problem:
maximize −λTAP−1ATλ/4− bTλ
subject to λ � 0

– Slater’s condition implies that p∗ = d∗ if Ax̃ ≺ b for some x̃

– truth is, p∗ = d∗ always!
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Complementary slackness∗

• assume strong dualtiy holds, x∗ is primal optimal, and (λ∗, ν∗) is dual optimal

f0(x
∗
) = g(λ

∗
, ν
∗
) = inf

x

(
f0(x) +

m∑
i=1

λ
∗
ifi(x) +

p∑
i=1

ν
∗
i hi(x)

)

≤ f0(x
∗
) +

m∑
i=1

λ
∗
ifi(x

∗
) +

p∑
i=1

ν
∗
i hi(x

∗
)

≤ f0(x
∗
)

• thus, all inequalities are tight, i.e., they hold with equalities

– x∗ minimizes L(x, λ∗, ν∗)

– λ∗ifi(x
∗) = 0 for all i, known as complementary slackness

λ
∗
i > 0⇒ fi(x

∗
) = 0, fi(x

∗
) < 0⇒ λ

∗
i = 0
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Karush-Kuhn-Tucker (KKT) conditions∗

• KKT (optimality) conditions consist of

– primal feasibility: fi(x) ≤ 0 for all 1 ≤ i ≤ m, hi(x) = 0 for all 1 ≤ i ≤ p

– dual feasibility: λ � 0

– complementary slackness: λifi(x) = 0

– zero gradient of Lagrangian: ∇f0(x) +
∑m

i=1 λi∇fi(x) +
∑p

i=1 νi∇hi(x) = 0

• if strong daulity holds and x∗, λ∗, and ν∗ are optimal, they satisfy KKT condtions!

SNU cryptography seminar: cvx opt & distributed learning via ADMM 21



Sunghee Yun Feb 02, 2024

KKT conditions for convex optimization problem∗

• if x̃, λ̃, and ν̃ satisfy KKT for convex optimization problem, then they are optimal!

– complementary slackness implies f0(x̃) = L(x̃, λ̃, ν̃)

– last conidtion together with convexity implies g(λ̃, ν̃) = L(x̃, λ̃, ν̃)

• thus, for example, if Slater’s condition is satisfied, x is optimal if and only if there exist

λ, ν that satisfy KKT conditions

– Slater’s condition implies strong dualtiy, hence dual optimum is attained

– this generalizes optimality condition ∇f0(x) = 0 for unconstrained problem
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Alternating Direction Method of Multipliers (ADMM)

REFERENCE:

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein

Distributed optimization and statistical learning via the alternating direction method of

multipliers
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What is ADMM for?

• ADMM is for

– ML with huge data sets

– distributed optimization where

– MANY local agents solving large problem by iteratively solving small problems while

being coordinated by ONE central agent
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Dual ascent method

• consider convex equality-constrained optimization problem:

minimize f(x)

subject to Ax = b

• Lagrangian defined by L(x, y) = f(x) + yT (Ax− b)
• dual function defined by

g(y) = inf
x
L(x, y) = − sup

x
((−AT

y)
T
x− f(x))− bTy = −f∗(−AT

y)− bTy

• dual probem defined by

maximize g(y)
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Dual ascent method

• gradient method for dual problem:

y
k+1

= y
k

+ α
k∇g(yk)

where ∇g(y) = Ax̃− b with x̃ = argminxL(x, y)

• this fact induces the following dual ascent method :

x
k+1

:= argmin
x

L(x, y
k
)

y
k+1

:= y
k

+ α
k
(Ax

k+1 − b)

– consists of two stes; x-minimization and dual update
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Dual decomposition

• suppose that f is separable in x1, . . . , xN , i.e.,

f(x) = f1(x1) + · · ·+ fN(xN)

where x =
[
x1 · · · xN

]T
• then, L is separable, too, since

L(x, y) =

N∑
i=1

fi(xi) + y
T

(
N∑
i=1

Aixi − b
)

=

N∑
i=1

(fi(xi) + y
T
Aixi)− bTy

• thus, x-minimization step splits into N separate minimizations:

xi
k+1

= argmin
xi

Li(xi, y
k
) = argmin

xi

(fi(xi) + y
T
Aixi)

• parallelism can be employed!
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Method of multipliers

• dual ascent fails, e.g., when f is an affine function in x!

• one solution: augmented Lagrangian

Lρ(x, y) = f(x) + y
T
(Ax− b) + (ρ/2)‖Ax− b‖2

2

• method of multipliers:

x
k+1

:= argmin
x

Lρ(x, y
k
)

y
k+1

:= y
k

+ ρ(Ax
k+1 − b)
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Optimality condition∗

• optimality conditions: Ax∗ − b = 0, ∇f(x∗) + ATy∗ = 0

• xk+1 minimizes Lρ(x, y
k), hence

0 = ∇xLρ(x
k+1
, y

k
)

= ∇xf(x
k+1

) + A
T
(y

k
+ ρ(Ax

k+1 − b))

= ∇xf(x
k+1

) + A
T
y
k+1

• thus, dual feasibility achieved!

• primal feasibility achieved in limit: limk→∞Ax
k+1 = b
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Pros and cons of method of multipliers

• pros: it works even for nondifferentiable or affine f possibly with +∞ value

• cons: the penalty term deprives it of its capability of parallelism!

SNU cryptography seminar: cvx opt & distributed learning via ADMM 30



Sunghee Yun Feb 02, 2024

ADMM

• ADMM

– retains the robustness of method of multipliers

∗ can deal with nondifferentiable f

∗ can deal with affine f

∗ can deal with f with +∞ value

– supports decomposition, hence parallelism

• also called “robust dual decomposition” or “decomposable method of multipliers”
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ADMM formulation and algorithm

• ADMM formulation:
minimize f(x) + g(z)

subject to Ax+ Bz = c

where f and g convex

• then, augmented Lagrangian defined by

Lρ(x, z, y) = f(x) + g(z) + y
T
(Ax+ Bz − c) + (ρ/2)‖Ax+ Bz − c‖2

2

• finally, ADMM steps:

x-minimization: xk+1 := argminxLρ(x, z
k, yk)

z-minimization: zk+1 := argminz Lρ(x
k+1, z, yk)

dual update: yk+1 := yk + ρ(Axk+1 + Bzk+1 − c)
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Optimality conditions∗

• optimality conditions

primal feasibility: Ax+ Bz − c = 0

dual feasibility: ∇f(x) + ATy = 0, ∇g(z) + BTy = 0

• since zk+1 minimizes Lρ(x
k+1, z, yk),

0 = ∇g(zk+1) + BTyk + ρBT (Axk+1 + Bzk+1 − c)
= ∇g(zk+1) + BT (yk + ρ(Axk+1 + Bzk+1 − c))
= ∇g(zk+1) + BTyk+1

– thus, (xk+1, zk+1, yk+1) satisfies the second dual feasibility condition!

• primal feasibility and the first dual feasibility are achieved as k →∞
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ADMM in scaled form∗

• rewrite augmented Lagrangian with r = Ax+ Bz − c and u = (1/ρ)y:

Lρ(x, z, y) = f(x) + g(z) + yT (Ax+ Bz − c) + (ρ/2)‖Ax+ Bz − c‖2
2

= f(x) + g(z) + (ρ/2)(‖r‖2
2 + (2/ρ)yTr)

= f(x) + g(z) + (ρ/2)(‖r + (1/ρ)y‖2
2 − ‖(1/ρ)y‖

2
2)

= f(x) + g(z) + (ρ/2)‖Ax+ Bz − c+ u‖2
2 − (ρ/2)‖u‖2

2

• ADMM in scaled form: (with uk := (1/ρ)yk)

x-minimization: xk+1 := argminx(f(x) + (ρ/2)‖Ax+ Bzk − c+ uk‖2
2)

z-minimization: zk+1 := argminz(g(z) + (ρ/2)‖Axk+1 + Bz − c+ uk‖2
2)

dual update: uk+1 := uk + (Axk+1 + Bzk+1 − c)

• Note that uk = u0 +
∑k

i=1 r
i with rk = Axk + Bzk − c
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Convergence

• assuming that

– f and g are convex, closed, proper, i.e.,

{(x, t) ∈ Rn × R | f(x) ≤ t}, {(z, t) ∈ Rn × R | g(x) ≤ t}

are closed, nonempty, convex sets

– L0 has a saddle point, i.e., existence of (x∗, z∗, y∗) such that

L0(x
∗
, z
∗
, y) ≤ L0(x

∗
, z
∗
, y
∗
) ≤ L0(x, z, y

∗
)

holds for all x, z, y

• ADMM converges:

– iterates approach feasibility: Axk + Bzk − c→ 0

– objective approaches optimal value: f(xk) + g(zk)→ p∗
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Related algorithms∗

• Douglas, Peaceman, Rachford, Lions, Mercier: operator spliting methods (1950s, 1979)

• Rockafellar: proximal point algorithm (1976)

• Dykstra’s alternating projections algorithm (1983)

• Spingarn’s method of partial inverses (1985)

• Rockafellar-Wets progressive hedging (1991)

• Rockafellar, et al.: proximal methods (1976–Present)

• Bregman iterative methods (2008–Present)
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Common patterns

• x-update step requires minimizing

f(x) + (ρ/2)‖Ax+ v
k‖2

2

where vk = Bzk − c+ uk

• z-update step requires minimizing

g(z) + (ρ/2)‖Bz + w
k‖2

2

where wk = Axk+1 − c+ uk

• a few special cases enable the simplification of these updates (by exploting special

structures)
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Decomposition

• suppose

– f is block-separable:

f(x) = f1(x1) + · · ·+ fN(xN)

– A comformably block separable, i.e., ATA is block diagonal

A
T
A =

 AT
1

...

AT
N

 [ A1 · · · AN

]
=


AT

1A1 0 · · · 0

0 AT
2A2 · · · 0

... ... . . . ...

0 0 · · · AT
NAN


• then, x-update splits into N parallel updates of xi

• the very same thing can be applied to z-udpate
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Proximal operator∗

• when A = I, x-update becomes

x
+

= argmin
x

(
f(x) + (ρ/2)‖x− v‖2

2

)
= prox

f,ρ
(v)

• furthermore,

– if f = IC, i.e., f is indicator function of C ⊆ Rn, then

x
+

:= ΠC(v),

i.e., projection onto C.

– if f = λ‖ · ‖1, i.e., f is l1 norm, then

x
+
i := Sλ/ρ(vi),

i.e., soft thresholding where Sa(v) = (v − a)+ − (−v − a)+
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Quadratic objective function∗

• assume f(x) = (1/2)xTPx+ qTx+ r

• then, x-update becomes

x
+

= argmin
x

(
(1/2)x

T
Px+ q

T
x+ r + (ρ/2)‖Ax− v‖2

2

)
= (P + ρA

T
A)
−1

(ρA
T
v − q)

• matrix inversion lemma implies

(P + ρA
T
A)
−1

= P
−1 − ρP−1

A
T
(I + ρAP

−1
A
T
)
−1
AP

−1

• if direct method is used, cache factorization of P + ρATA or I+ρAP
−1AT cen save

tremendous of computation efforts
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Solutions for general objective functions

• if f is smooth,

• standard methods can be used:

– Newton’s method, gradient method, quasi-Newton’s method

– preconditioned CG, limited-memory BFGS (scale to very large problems)

• other techniques:

– warm start

– early stopping with variant (or adaptive) tolerances as algorithm proceeds
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Constrained optimization

• generic constrained optimization:

minimize f(x)

subject to x ∈ C

• ADMM form:
minimize f(x) + g(z)

subject to x− z = 0

where g(z) = IC(z)

• then, ADMM iterations become:

xk+1 := argminx

(
f(x) + (ρ/2)

∥∥x− zk + uk
∥∥2

2

)
zk+1 := ΠC

(
xk+1 + uk

)
uk+1 := uk + xk+1 − zk+1
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Lasso formulation

• problem formulation:

minimize (1/2)‖Ax− b‖2
2 + λ‖x‖1

• ADMM form:
minimize (1/2)‖Ax− b‖2

2 + λ‖z‖1

subject to x− z = 0

• ADMM iterations:

xk+1 :=
(
ATA+ ρI

)−1 (
ATb+ ρzk − yk

)
zk+1 := Sλ/ρ

(
xk+1 + yk/ρ

)
yk+1 := yk + ρ

(
xk+1 − zk+1

)
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Lasso computational example

• for dense A ∈ R1500×5000, i.e., 5000 predictors and 1500 measurements

• computation efforts:

– 1.32 seconds for factorization

– 0.03 seconds for ADMM iterations

– 2.97 seconds for lasso solve

– 4.45 seconds for full regularization path, e.g., 30 λs

• only takes short sciprt
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Sparse inverse covariance selection (SICS)∗

• S: empirical covariance of samples from N (0,Σ), with Σ−1 sparse, e.g., Gaussian

Markov random field

• estimate Σ−1 via l1 regularized maximum likelihood:

minimize Tr(SX)− log detX + λ‖X‖1

• methods: COVSEL (Banerjee et al 2008) or graphical lasso (Friedman, Hastie, and

Tibshirani, 2007)
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SICS via ADMM∗

• SICS problem:

minimize Tr(SX)− log detX + λ‖X‖1

• ADMM form:
minimize Tr(SX)− log detX + λ‖Z‖1

subject to X − Z = 0

• ADMM iterations:

Xk+1 := argminX
(
Tr(SX)− log detX + (ρ/2)‖X − Zk + Uk‖2

F

)
Zk+1 := Sλ/ρ

(
Xk+1 + Uk

)
Uk+1 := Uk + (Xk+1 − Zk+1)
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Solution for X-update∗

• eigenvalue decomposition:

ρ(Z
k − Uk

)− S = QΛQ
T

• diagonal matrix forming:

X̃ii =
λi +

√
λ2
i + 4ρ

2ρ

• then, X-udpate can be achieved by

X
k+1

= QX̃Q
T
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SICS example

• for Σ−1 ∈ R1000×10000 with 10000 nonzero entries

• ADMM takes 3–10 minutes

• for comparision,

– COVSEL takes > 25 minutes when Σ−1 is 400× 400 tridiagonal matrix
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Consensus optimization (CO)

• sum of N functions as objective

minimize
∑N

i=1 fi(x)

– for example, fi could be the loss function of ith training data block

• ADMM form:
minimize

∑N
i=1 fi(xi)

subject to xi − z = 0

– xi is ith local variable

– z is the global variable

– xi − z = 0 are consistency or consensus constraints

– regularization can be added via g(z)
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CO using ADMM

• Lagrangian:

Lρ(x, z, y) =

N∑
i=1

(
fi(xi) + y

T
i (xi − z) + (ρ/2)‖xi − z‖2

2

)
• ADMM iterations:

x
k+1
i := argmin

xi

(
fi(xi) + y

k
i

T
(xi − z) + (ρ/2)‖xi − z‖2

2

)

z
k+1
i :=

1

N

N∑
i=1

(
x
k+1
i + (1/ρ)y

k
i

)
y
k+1
i := y

k
i + ρ(x

k+1
i − zk+1

)
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Consensus classification

• given data set, (ai, bi), i = 1, . . . , N where ai ∈ Rn, bi ∈ {−1, 1}
• linear classifier sign(aTw + v) with (vector) weight or support vector w, offset v

• margin for ith data is bi(a
T
i w + v)

• loss for ith data is l
(
bi(a

T
i w + v)

)
where l is loss function, e.g., hinge, logistic,

probit, exponential, etc.

• choose w, v so as to minimize

1

N

N∑
i=1

l(bi(a
T
i w + v)) + r(w)

– r(w) is regularization term, e.g., l2, l1, lp, etc.

• split data and use ADMM consensus to solve the optimization problem
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Consensus SVM example

• hinge loss l(u) = (l− u)+ with l2 regularization

• toy problem with n = 2, N = 400 to illustrate

• data split into 20 groups, in worst possible way: each group contains only positive or

negative data
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The 1st Epoch
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The 5th Epoch
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The 40th Epoch
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Distributed lasso

• example with dense A ∈ Rm×n where m = 400, 000 and n = 8, 000

– distributed solver written in C using MPI and GSL

– no optimization or tuned libraries (like ATLAS, MKL)

– split into 80 subsystems across 10 (8-core) machines

• computation efforts:

– 30 seconds for loading data

– 5 seconds for factorization

– 2 seconds for subsequent ADMM iterations

– 6 seconds for lasso solve (∼ 15 ADMM iterations)
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Exchange problem∗

• typical problem formulation:

minimize
∑N

i=1 fi(xi)

subject to
∑N

i=1 xi = 0

– dual of consensus

– constraint is called equilibrium or market clearing constraint

• one interpretation: N agents exchanging n items so as to minimize total cost

– (xi)j > 0⇔ agent i receives (xi)j of item j from exchange

– (xi)j < 0⇔ agent i contributes −(xi)j of item j to exchange

• duality interpretation:

– y∗, i.e., optimal dual variable, can be interpreted as valid prices for items

– real (or virtual) cash payment (y∗)Txi by agent i
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ADMM conclusions

• ADMM

– provides single algorithm framework competitive with special algorithms

– induces systematic distributed algorithms with convergence proof

– whereas all federated learning based on (asynchronous) update does not provide

systematic learning

– can be easily applied to non-convex cases

• the underlying idea can be used for many ML areas

– computer vision (CV), natural language processing (NLP), classical statistical

learning
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