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e Sunghee Yun

— B.S., Electrical Engineering @ Seoul National University

— M.S., Electrical Engineering @ Stanford University

— Ph.D., Electrical Engineering @ Stanford University

— CAE Team @ Semiconductor R&D Center

— Design Technology Team @ DRAM Development Lab.

— Memory Sales & Marketing Team @ Memory Business Unit
— (currently) Software R&D Center

e Specialties

— convex optimization
— decentralized deep learning
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Today

e Convex Optimization for Machine Learning
e Alternating direction method of multipliers (ADMM)

e Four perspectives for Machine Learning

— statistical perspective

— computer scientific perspective

— numerical algorithmic perspective

— performance improvement via hardware parallelism

e Al Applications
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Prerequisite for the talk

This talk will assume the audience

e has been exposed to basic linear algebra

e can distinguish between componentwise inequality and that for positive semidefiniteness,

1.€.,
a? bl
Ax X b & : r < : <:>a,iTm§biforz':1,...,m,
af,b b,
but,

AtO@A:ATanmeA:BZOforaIIazGR”
A-0e A= A" and 27 Az > 0 for all nonzero z € R"
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Alternating Direction Method of Multipliers (ADMM)

e reference: Distributed optimization and statistical learning via the alternating direction
method of multipliers (by S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein)
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What is ADMM for?

e ADMM is for

— machine learning (or statistical learning) with huge data sets

— decentralized optimization where
* agents (or devices in loT environment) coordinate to solve large problem by
iteratively solving small problems and being coordinated by central agent
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Dual ascent method

e consider convex equality-constrained optimization problem:

minimize  f(x)
subjectto Ax = b

o Lagrangian defined by L(z,y) = f(z) + y' (Az — b)
e dual function defined by

g(y) = inf L(z,y) = — Sgp((—ATy>Taj —flx) —by=—f(—A"y)—b'y

e dual probem defined by
maximize g(y)
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Dual ascent method

e gradient method for dual problem:

Y =" + " Vg(y")

where Vg(y) = AZ — b with £ = argmin_, L(x, y)
e this fact induces the following dual ascent method:
"= argmin L(x, yk)

yk—l—l L yk + (){k(ACEk+1 . b)

— consists of two stes; x-minimization and dual update
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Dual decomposition

® suppose that f is separable in x1, ..., Ty, t.€.,
f(x) = fi(z1) + -+ fy(zn)

T
where x = [ ry -+ IN ]
e then, L is separable, too, since

N N N
L(z,y) = > filz)+y | D Amwi—b) => (filzi) +y Amw;) —b'y
=1 1=1 1=1

e thus, z-minimization step splits into /N separate minimizations:

T = argmin L;(x;, yk) = argmin(fi(z;) + yTAixi)

Ty Zq

e parallelism can be employed!
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Method of multipliers

e dual ascent fails, e.g., when f is an affine function in x!

e one solution: augmented Lagrangian

Ly(z,y) = f(z) +y (Az —b) + (p/2)|| Az — b]|

e method of multipliers:
"1 .= argmin L,(x, y")
xr

y' =y 4 (At = b)
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Optimality condition

e optimality conditions: Az* — b =0, Vf(z*) + Aly* =0

o " minimizes L,(x, y"), hence

0 = VmLp(:UkH, yk)
= Vof@") + AT+ p(Az"T — b))

e thus, dual feasibility achieved!

e primal feasibility achieved in limit: limy_, Azl =

Convex Optimization for Decentralized Machine Learning @ KCC 2017 10



Sunghee Yun June 18, 2017

Pros and cons of method of multipliers

e pros: it works even for nondifferentiable or affine f possibly with +o00 value

e cons: the penalty term deprives it of its capability of parallelism!
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Alternating direction method of multipliers (ADMM)

e ADMM (proposed by Gabay, Mercier, Glowinski, Marrocco in 1976)

— retains the robustness of method of multipliers
x can deal with nondifferentiable f

+ can deal with affine f
x can deal with f with 4co value

— supports decomposition, hence parallelism

o dubbed “robust dual decomposition” or “decomposable method of multipliers”
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ADMM

e ADMM formulation:
minimize  f(x) + g(2)
subject to Ax + Bz = c

where f and g convex

e then, the augmented Lagrangian defined by

Ly(z,2,y) = f(z) + g(2) + y (Az + Bz —¢) + (p/2)||Az + Bz — |

e finally, ADMM steps:
"= argmin, L,(z, 2", y")

"1 .= argmin, L,(z" ", 2, y")

L ok 4 p(Adtt 4 B2 — )

T-minimization: x
z-minimization: 2z
dual update: Y
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Optimality conditions

e optimality conditions

primal feasibility: Ax + Bz —c =0
dual feasibility: Vi(x)+ ATy =0, Vg(z) + By =0

k+1 k+1

® since z minimizes L,(z"" ", z,y"),

Vg(z"™) + BY (" + p(Az" 4+ B2" — )
vg(zk‘—l—l) _|_ BTyk—l—l

k+1

— thus, (2Tt 2Pt gt

) satisfies the second dual feasibility condition!

e primal feasibility and the first dual feasibility are achieved as kK — oo
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ADMM in scaled form

e rewrite augmented Lagrangian with r = Ax + Bz — cand u = (1/p)y:

Ly(z,z,y) = f(z)+g(z) +y" (Az + Bz —c) + (p/2)||Az + Bz — ¢|;
f(x) +9(2) + (p/2)(Irllz + (2/p)y" )

f(2) +g(2) + (p/2)(|Ir + (1/p)yllz — [1(1/p)yll3)

f(x) +9(2) + (p/2)[|Az + Bz — ¢ + ull; = (p/2)]|ull2

e ADMM in scaled form: (with v* := (1/p)y")

z-minimization: z"t! := argmin_ (f(z) + (p/2)||Az + Bz" — ¢ + u"||2)
z-minimization:  2*T! := argmin_(g(2) + (p/2)||Az*t' + Bz — c + u"||3)
dual update: W= uF 4 (Axkﬂr1 1+ Bkt c)

e Note that u* = % + Zle r* with r* = Az* + Bz — ¢

Convex Optimization for Decentralized Machine Learning @ KCC 2017 15



Sunghee Yun June 18, 2017

Convergence

e assuming that
— f and g are convex, closed, proper, i.c.,

{(z,t) e R" xR f(z) < t}, {(2,t) ER" X R | g(z) <t}

are closed, nonempty, convex sets
— L has a saddle point, i.e., existence of (™, z*, y™) such that

LO(x*7 Z*ay) S LO(x*a Z*a y*) S LO(xa < y*)

holds for all x, z, y
e ADMM converges:

— jterates approach feasibility: Az* + Bz¥ — ¢ — 0
— objective approaches optimal value: f(z*) 4+ g(z*) — p*

Convex Optimization for Decentralized Machine Learning @ KCC 2017 16



Sunghee Yun June 18, 2017

Related algorithms

e Douglas, Peaceman, Rachford, Lions, Mercier: operator spliting methods (1950s, 1979)
e Rockafellar: proximal point algorithm (1976)

e Dykstra's alternating projections algorithm (1983)

e Spingarn’'s method of partial inverses (1985)

e Rockafellar-Wets progressive hedging (1991)

e Rockafellar, et al.: proximal methods (1976—Present)

e Bregman iterative methods (2008—Present)
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Common patterns

e x-update step requires minimizing

f (@) + (p/2)|| Az + "I
where v* = BzF — ¢ -+ u”
® z-update step requires minimizing
9(2) + (p/2)|| Bz + w"|;

where w* = AzFt — ¢ + ¥

e a few special cases enable the simplification of these updates (by exploting special
structures)
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Decomposition

® suppose
— f is block-separable:

f(x) = fiz1) + -+ fn(zN)

— A comformably block separable, i.e., AT A is block diagonal

AT A 0

AT A = : [ A - Ay ] = 9 A%AQ
T . .
An 0 0

e then, x-update splits into N parallel updates of x;

e the very same thing can be applied to z-udpate
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What is proximal operator?

e when A = I, xz-update becomes

z* = argmin (f(z) + (p/2)]lx — v[l}) = prox(v)
x e
e furthermore,
— if f = I¢, id.e., f is indicator function of C' C R", then

=T (v),

i.e., projection onto C.
— if f = A|| - ||1, i.e., fis I3 norm, then

ac:_ = Sx/p(vi),

i.e., soft thresholding where S,(v) = (v —a)y — (—v — a)+
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What if the objective is quadratic?

o assume f(x) = (1/2)a’ Pz + q'z 4+ r

e then, x-update becomes

T = argmin ((I/Z)xTP.ﬂU +q z4+r+(p/2)||Az — ’UH%)
= (P+pA"A) " (pATv - q)
e matrix inversion lemma implies

(P4 pAT A =P — pP AT (T + pAP AT AP

e if direct method is used, cache factorization of P + pAY A or I, pAP ' A" cen save
tremendous of computation efforts
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Solutions for general objective functions

e if f is smooth,
e standard methods can be used:

— Newton’s method, gradient method, quasi-Newton's method

— preconditioned CG, limited-memory BFGS (scale to very large problems)
e other techniques:
— warm start

— early stopping with variant (or adaptive) tolerances as algorithm proceeds
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Constrained convex optimization

® generic constrained optimization:

minimize  f(x)
subjectto «x € C

e ADMM form:
minimize  f(x) 4+ g(2)
subjectto = — 2z =20
where g(z) = I¢(2)
e then, ADMM iterations become:

. 2
"t .= argmin, (f(ﬂf) + (p/2) ||z — 2"+ uk\|2)
P P C

B i g 8
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Lasso formulation

e problem formulation:

minimize (1/2)||Az — b||§ + Al|x]|1

e ADMM form:
minimize  (1/2)||Ax — ng-l—)\HZHl

subjectto x*x — 2z =0

e ADMM iterations:

A (ATA + ,oI)_1 (ATb + pzt — yk)
S S Sx/p (xk—i—l 4 yk/p)
yHL = P (wkﬂ . Zk+1)
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Lasso computational example

e for dense A € R?P00x5000 ;o 5000 predictors and 1500 measurements

e computation efforts:

— 1.32 seconds for factorization

— 0.03 seconds for ADMM iterations

— 2.97 seconds for lasso solve

— 4.45 seconds for full regularization path, e.g., 30 As

e only takes short sciprt
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Sparse inverse covariance selection (SICS)

e S: empirical covariance of samples from A(0, ), with 27! sparse, e.¢., Gaussian
Markov random field

e estimate X' via [; regularized maximum likelihood:

minimize Tr(SX) — logdet X 4+ \||X||;

e methods: COVSEL (Banerjee et al 2008) or graphical lasso (Friedman, Hastie, and
Tibshirani, 2007)
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SICS via ADMM

e SICS problem:

minimize Tr(SX) — logdet X + \|| X||1

e ADMM form:
minimize  Tr(SX) — logdet X + \||Z||:

subjectto X —Z =0
e ADMM iterations:

XM = argminy (Tr(SX) — logdet X + (p/2)||X — Z" + U*||3)
Zk‘—i—l — S)\/p (Xk‘-l-l _|_ Uk:)
Uk+1 — Uk + (Xk+1 . Zk—l—l)
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Solution for X-update

e cigenvalue decomposition:

p(Z" —U") — 8 =QAQ"

e diagonal matrix forming:

% _)\i—|—\/)\?—|—4p

i = 2

e then, X-udpate can be achieved by
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SICS example

o for X1 ¢ RIVOOXI0000 \\ith 10000 nonzero entries

e ADMM takes 3—10 minutes

e for comparision,
— COVSEL takes > 25 minutes when 27! is 400 x 400 tridiagonal matrix
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Consensus optimization (CO)

e sum of NN functions as objective

minimize Zfll fi(x)
— for example, f; could be the loss function of ith training data block

e ADMM form:
minimize Zf\il fi(x;)
subjectto x; — 2z =0
— x; Is t¢th local variable
— z is the global variable
— x; — z = 0 are consistency or consensus constraints
— regularization can be added via g(z)
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CO using ADMM

e lLagrangian:

N

Loz, 2,y) = > (Filw:) + ] (@i = 2) + (p/2) i — 2113)
=1
e ADMM iterations:
k+1 : kT 2
i = argmin (filz) +ul (@ - 2) + (0/2) |2 — 2]13)

N
AR %Z(kH—F(I/P)’yf)

y]'ﬁ—l—l P _|_ p(ajk—l—l k+1)

1
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Consensus classification

e given data set, (a;,b;), i =1,..., N wherea; € R", b; € {—1,1}
e linear classifier sign(a’ w + v) with (vector) weight or support vector w, offset v
e margin for ith data is b;(a; w + v)

e loss for ith data is l(b,-(afw + v)) where [ is loss function, e.g., hinge, logistic,
probit, exponential, etc.

e choose w, v so as to minimize

% ; l(bi(a] w+v)) + r(w)

— r(w) is regularization term, e.g., l2, 1, 1,, etc.

e split data and use ADMM consensus to solve the optimization problem
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Consensus SVM example

e hinge loss I[(u) = (I — w)+ with Iy regularization

e toy problem with n = 2, N = 400 to illustrate

e data split into 20 groups, in worst possible way: each group contains only positive or
negative data
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The 1st Epoch
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The 5th Epoch
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The 40th Epoch
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Distributed lasso

e example with dense A € R™*" where m = 400, 000 and n = 8, 000
— distributed solver written in C using MPIl and GSL
— no optimization or tuned libraries (like ATLAS, MKL)

— split into 80 subsystems across 10 (8-core) machines

e computation efforts:
— 30 seconds for loading data
— b5 seconds for factorization
— 2 seconds for subsequent ADMM iterations

— 6 seconds for lasso solve (~ 15 ADMM iterations)
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Exchange problem

e typical problem formulation:

minimize Zﬁl fi(xi)

subject to 27{\;1 x; =0

e dual of consensus

e one interpretation: N agents exchanging n items so as to minimize total cost
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