
123

S P R I N G E R B R I E F S I N CO M P U T E R S C I E N C E

Anthony L. Caterini · Dong Eui Chang

Deep Neural
Networks in a
Mathematical
Framework

SpringerBriefs in Computer Science

Series editors

Stan Zdonik, Brown University, Providence, Rhode Island, USA
Shashi Shekhar, University of Minnesota, Minneapolis, Minnesota, USA
Xindong Wu, University of Vermont, Burlington, Vermont, USA
Lakhmi C. Jain, University of South Australia, Adelaide, South Australia, Australia
David Padua, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
Xuemin (Sherman) Shen, University of Waterloo, Waterloo, Ontario, Canada
Borko Furht, Florida Atlantic University, Boca Raton, Florida, USA
V.S. Subrahmanian, University of Maryland, College Park, Maryland, USA
Martial Hebert, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
Katsushi Ikeuchi, University of Tokyo, Tokyo, Japan
Bruno Siciliano, Università di Napoli Federico II, Napoli, Italy
Sushil Jajodia, George Mason University, Fairfax, Virginia, USA
Newton Lee, Newton Lee Laboratories, LLC, Tujunga, California, USA

More information about this series at http://www.springer.com/series/10028

http://www.springer.com/series/10028

Anthony L. Caterini • Dong Eui Chang

Deep Neural Networks
in a Mathematical Framework

123

Anthony L. Caterini
Department of Statistics
University of Oxford
Oxford, Oxfordshire, UK

Dong Eui Chang
School of Electrical Engineering
Korea Advanced Institute of Science
and Technology
Daejeon, Korea (Republic of)

ISSN 2191-5768 ISSN 2191-5776 (electronic)
SpringerBriefs in Computer Science
ISBN 978-3-319-75303-4 ISBN 978-3-319-75304-1 (eBook)
https://doi.org/10.1007/978-3-319-75304-1

Library of Congress Control Number: 2018935239

© The Author(s) 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by the registered company Springer International Publishing AG part
of Springer Nature.
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-319-75304-1

To my fiancée Alexandra

To my parents

Preface

Over the past decade, Deep Neural Networks (DNNs) have become very popular
models for problems involving massive amounts of data. The most successful DNNs
tend to be characterized by several layers of parametrized linear and nonlinear
transformations, such that the model contains an immense number of parameters.
Empirically, we can see that networks structured according to these ideals perform
well in practice. However, at this point we do not have a full rigorous understanding
of why DNNs work so well, and how exactly to construct neural networks that
perform well for a specific problem. This book is meant as a first step towards
forming this rigorous understanding: we develop a generic mathematical framework
for representing neural networks and demonstrate how this framework can be used
to represent specific neural network architectures. We hope that this framework
will serve as a common mathematical language for theoretical neural network
researchers—something which currently does not exist—and spur further work into
the analytical properties of DNNs.

We begin in Chap. 1 by providing a brief history of neural networks and exploring
mathematical contributions to them. We note what we can rigorously explain about
DNNs, but we will see that these results are not of a generic nature. Another topic
that we investigate is current neural network representations: we see that most
approaches to describing DNNs rely upon decomposing the parameters and inputs
into scalars, as opposed to referencing their underlying vector spaces, which adds
a level of awkwardness into their analysis. On the other hand, the framework that
we will develop strictly operates over these vector spaces, affording a more natural
mathematical description of DNNs once the objects that we use are well defined and
understood.

These mathematical objects are then presented in Chap. 2. Derivatives arise
in the training of DNNs—the parameters are often learned using some form of
gradient descent with respect to a loss function—so we first review some elementary
facts concerning the derivatives of vector-valued maps. We will also distinguish

vii

viii Preface

between state variables and parameters throughout this work when describing
neural network layers; thus, we present notation for maps which depend on both,
along with notation for their associated derivatives. We conclude this chapter by
looking at elementwise functions: maps which operate on individual coordinates
of their inputs. These comprise the nonlinear portion of DNNs and are therefore
important to include in our study.

We proceed in Chap. 3 by building our generic DNN framework. We represent
one layer of a DNN as a parameter-dependent map, and then represent the entire
DNN as a composition of these individual layers, composed according to the current
state variable. Here, we assume that the parameters are independent across layers,
but in later chapters we will see how to modify this assumption. We also describe an
algorithm for calculating one step of gradient descent, performed directly over the
inner product space defining the parameters, by representing the ubiquitous error
backpropagation step in a concise and compact form. Besides the standard squared
or cross-entropy loss functions, we also demonstrate how to extend our framework
to a more complex loss function involving the first derivative of the network.

After developing the generic framework, we apply it to three specific network
examples in Chap. 4. We start with the Multilayer Perceptron, the simplest type of
DNN, and show how to generate a gradient descent step for it. We then represent
the Convolutional Neural Network (CNN), which contains more complicated input
spaces, parameter spaces, and transformations at each layer. The CNN, however,
still fits squarely into the generic framework of Chap. 3. The last structure that we
consider is the Deep Auto-Encoder, which has parameters that are not independent
at each layer and thus falls slightly outside of the framework. However, we are still
able to extend the framework to handle this case without much difficulty.

In Chap. 5, we extend the framework of Chap. 3 even further to represent
Recurrent Neural Networks (RNNs), the sequence-parsing DNN architecture. The
parameters of an RNN are shared across all layers of the network, and so we rely on
some of the tools from Chap. 2 to modify our framework for representing RNNs. We
describe a generic RNN first and then the specific case of the vanilla RNN. For the
sake of completeness, we represent and compare both the common backpropagation
through time and the less-common real-time recurrent learning approaches to
gradient calculation in an RNN. We conclude the chapter by discussing extensions
to basic RNNs, but explicit representations of these networks are outside of the
scope of this book.

This book is intended for neural network researchers—theoretical or otherwise—
and those from the fields of mathematics, sciences, and engineering who would like
to learn more about DNNs. It is quite clear that DNNs are brimming with potential,
and we believe that solidifying their mathematical foundations will lead to even
more impressive results in application. Furthermore, we expect that this book will
make neural networks more accessible to those outside of the community, allowing
additional researchers to contribute to this exciting field.

Preface ix

Anthony L. Caterini would like to acknowledge support from the NSERC of
Canada. Dong Eui Chang would like to acknowledge support from the NSERC of
Canada and the MSIP/IITP of Korea.

Oxford, UK Anthony L. Caterini
Daejeon, Korea Dong Eui Chang
November 2017

Contents

1 Introduction and Motivation . 1
1.1 Introduction to Neural Networks . 2

1.1.1 Brief History . 2
1.1.2 Tasks Where Neural Networks Succeed . 3

1.2 Theoretical Contributions to Neural Networks . 4
1.2.1 Universal Approximation Properties . 4
1.2.2 Vanishing and Exploding Gradients . 5
1.2.3 Wasserstein GAN . 6

1.3 Mathematical Representations. 7
1.4 Book Layout. 7
References . 8

2 Mathematical Preliminaries . 11
2.1 Linear Maps, Bilinear Maps, and Adjoints . 12
2.2 Derivatives. 13

2.2.1 First Derivatives. 13
2.2.2 Second Derivatives . 14

2.3 Parameter-Dependent Maps . 15
2.3.1 First Derivatives. 16
2.3.2 Higher-Order Derivatives. 16

2.4 Elementwise Functions . 17
2.4.1 Hadamard Product . 18
2.4.2 Derivatives of Elementwise Functions . 19
2.4.3 The Softmax and Elementwise Log Functions 20

2.5 Conclusion . 22
References . 22

3 Generic Representation of Neural Networks . 23
3.1 Neural Network Formulation . 24
3.2 Loss Functions and Gradient Descent. 25

3.2.1 Regression. 25
3.2.2 Classification . 26

xi

xii Contents

3.2.3 Backpropagation . 27
3.2.4 Gradient Descent Step Algorithm. 28

3.3 Higher-Order Loss Function. 29
3.3.1 Gradient Descent Step Algorithm. 32

3.4 Conclusion . 33
References . 34

4 Specific Network Descriptions . 35
4.1 Multilayer Perceptron . 36

4.1.1 Formulation . 36
4.1.2 Single-Layer Derivatives . 37
4.1.3 Loss Functions and Gradient Descent . 38

4.2 Convolutional Neural Networks . 40
4.2.1 Single Layer Formulation . 40
4.2.2 Multiple Layers . 50
4.2.3 Single-Layer Derivatives . 50
4.2.4 Gradient Descent Step Algorithm. 51

4.3 Deep Auto-Encoder . 52
4.3.1 Weight Sharing. 52
4.3.2 Single-Layer Formulation . 53
4.3.3 Single-Layer Derivatives . 54
4.3.4 Loss Functions and Gradient Descent . 55

4.4 Conclusion . 57
References . 58

5 Recurrent Neural Networks . 59
5.1 Generic RNN Formulation . 59

5.1.1 Sequence Data . 60
5.1.2 Hidden States, Parameters, and Forward Propagation 60
5.1.3 Prediction and Loss Functions . 62
5.1.4 Loss Function Gradients. 62

5.2 Vanilla RNNs. 70
5.2.1 Formulation . 70
5.2.2 Single-Layer Derivatives . 71
5.2.3 Backpropagation Through Time . 72
5.2.4 Real-Time Recurrent Learning . 74

5.3 RNN Variants. 76
5.3.1 Gated RNNs. 77
5.3.2 Bidirectional RNNs . 78
5.3.3 Deep RNNs . 78

5.4 Conclusion . 78
References . 79

6 Conclusion and Future Work . 81
References . 82

Glossary . 83

Acronyms

AE Auto-encoder
BPTT Backpropagation Through Time
BRNN Bidirectional Recurrent Neural Network
CNN Convolutional Neural Network
DAE Deep Auto-Encoder
DBN Deep Belief Network
DNN Deep Neural Network
DRNN Deep Recurrent Neural Network
GAN Generative Adversarial Network
GPU Graphical Processing Unit
GRU Gated Recurrent Unit
LSTM Long Short-Term Memory
MLP Multilayer Perceptron
NN Neural Network
ReLU Rectified Linear Unit
RNN Recurrent Neural Network
RTRL Real-Time Recurrent Learning

xiii

Chapter 1
Introduction and Motivation

Neural Networks (NNs)—Deep Neural Networks (DNNs) in particular—are a
burgeoning area of artificial intelligence research, rife with impressive compu-
tational results on a wide variety of tasks. Beginning in 2006, when the term
Deep Learning was coined [24], there have been numerous contest-winning neural
network architectures developed. That is not to say that layered neural networks are
a new concept; it is only with the advent of modern computing power that we have
been able to fully harness the power of these ideas that have existed, in some form,
since the 1960s. However, because of the rise in computing power, results in the
field of DNNs are almost always of a computational nature, with only a minuscule
fraction of works delivering provable, mathematical guarantees on their behaviour.
A neural network remains, for the most part, a black box, governed by a similarly
mysterious set of hyperparameters specifying the network structure.

Neural networks are known to have non-convex loss function surfaces [13], and
often handle very high-dimensional data, which adds to the complexity of their
analysis and makes sound theoretical results difficult to achieve. Furthermore, there
does not exist a standard and compact algebraic framework for neural network
researchers to operate within. This book begins to address the latter issue, with
the hope that the framework developed here can be used to answer challenging
questions about the theoretical details of neural networks in the near future. There
has been some work which attempts to create a standard notation for neural
networks—the formulation in this book shares some similarities with [17], for
example—but we have added clear definitions of all mappings that we use, and
also a method for performing gradient descent to learn parameters directly over
the vector spaces in which the parameters are defined. Mathematical analysis is
important for neural networks, not only to improve their performance by gaining
a deeper understanding of their underlying mechanics, but also to ensure their
responsible deployment in applications impacting society.1

1E.g. self-driving cars, finance, other important systems.

© The Author(s) 2018
A. L. Caterini, D. E. Chang, Deep Neural Networks in a Mathematical Framework,
SpringerBriefs in Computer Science, https://doi.org/10.1007/978-3-319-75304-1_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75304-1_1&domain=pdf
https://doi.org/10.1007/978-3-319-75304-1_1

2 1 Introduction and Motivation

1.1 Introduction to Neural Networks

This section will serve as a basic introduction to neural networks, including their
history and some applications in which they have achieved state-of-the-art results.
Refer to [17, Chapter 1], [35], or [50] for a more in-depth review of the history of
neural networks and modern applications.

1.1.1 Brief History

Neural networks were originally conceived as a model that would imitate the
function of the human brain—a set of neurons joined together by a set of
connections. Neurons, in this context, are composed of a weighted sum of their
inputs followed by a nonlinear function, which is also known as an activation
function. The McCulloch-Pitts neuron of 1943 [39] was one of the earliest examples
of an artificial neuron, being heavily influenced by the supposed firing patterns
of neurons in the brain. The perceptron of 1958 [46] built upon that work by
learning the weights of the sum comprising the neuron according to a gradient
descent learning rule,2 and other single-layer networks followed a similar idea soon
after (e.g. [57]). Researchers then began stacking these networks into hierarchical
predictive models as early as in 1966, when [29] introduced the so-called Group
Method of Data Handling to learn multi-layered networks, similar to present-day
Multilayer Perceptrons (MLPs) but with generic polynomial activation functions
[50]. However, the models were perhaps too ambitious for the computing power of
the time, and neural-style networks began to fade into obscurity until around 1980.

In the early 1980s, neural networks were revived by a few important results.
Firstly, the Neocognitron [15], the predecessor to the modern Convolutional Neural
Network (CNN), was developed and demonstrated strong results on image process-
ing tasks. Secondly, the chain rule and error backpropagation were applied to an
MLP-style neural network [56], setting the stage for future developments in learning
algorithms for neural networks. Eventually, these two results were combined to great
effect—backpropagation with CNNs—resulting in the successful classification of
handwritten digits [32]. Along the way, backpropagation was developed further
[31, 47] and applied to other styles of networks, including the Auto-Encoder (AE)
[4] and Recurrent Neural Networks (RNNs) [58].

The developments of the 1980s laid the foundation for extensions of RNNs and
CNNs throughout the 1990s into the early 2000s. The Long Short-Term Memory
(LSTM) [26] was one of the most important networks designed in this time, as it
was the first recurrent network architecture to overcome the vanishing and exploding
gradients problem, described further in Sect. 1.2.2, while still demonstrating the

2Although the perceptron is just a specific case of logistic regression, which has roots from 1944
and earlier; see [7], for example.

1.1 Introduction to Neural Networks 3

ability to learn long-term dependencies in sequences. Around the same time, a deep
CNN for image processing was presented in [33]; financial institutions soon after
employed this network to read handwritten digits from cheques. Both the LSTM
and CNN remain at the forefront of neural network research, as they continue to
produce outstanding results either on their own or in tandem [22].

Finally, in 2006, deep learning exploded beyond just RNNs and CNNs with the
discovery of the Deep Belief Network (DBN) [24], and the increased viability of
Graphical Processing Units (GPUs) in research. DBNs are deep and unsupervised3

networks where each layer is a Restricted Boltzmann Machine [1], and the layers
are trained individually in a greedy fashion. Greedy layer-by-layer training of unsu-
pervised deep networks continued with Deep Auto-Encoders (DAEs) [6]—stacks
of single-layer auto-encoders. Gradually, DNNs moved away from unsupervised
learning to purely supervised learning [50], e.g. classification or regression, with
one of the forerunners of this trend being a standard deep MLP trained with GPUs
that achieved unprecedented results on the MNIST4 dataset [10]. This trend has
continued today, as most DNN research is of the supervised or semi-supervised
variety, save for one important exception: research into Generative Adversarial
Networks (GANs) [16], which we will discuss further in the Sect. 1.2.3.

1.1.2 Tasks Where Neural Networks Succeed

DNNs have demonstrated the ability to perform well on supervised learning
tasks, particularly when there is an abundance of training data. The CNN has
revolutionized the field of computer vision, achieving state-of-the-art results in
the area of image recognition [11, 18] and segmentation [23]. CNNs have also
been used within autonomous agents tasked with understanding grid-based data to
great effect: a computer recently achieved super-human performance in playing the
extremely complicated game of Go [52], and in playing Atari 2600 games with
minimal prior knowledge [41]. RNNs and very deep CNNs have also outperformed
all other methods in speech recognition [49]. The usefulness of RNNs (including
the LSTM) in generic sequence processing is also apparent, with state-of-the-art
results in machine translation [59], generation of marked-down text5[19], and image
captioning [55], to name a few. Besides old methods that have recently become

3We have generally two main classes of deep networks: supervised networks, requiring a specific
target for each input, and unsupervised networks, which have no specific targets and only look to
find structure within the input data. We can also have semi-supervised learning, in which some
proportion of the training examples have targets, but this is not as common. Finally, another
category called reinforcement learning exists, in which an autonomous agent attempts to learn
a task, but the neural networks used within this are still often supervised—they attempt to predict
the value of an action given the current state.
4MNIST is from [34].
5E.g. Wikipedia articles, LaTeX documents.

4 1 Introduction and Motivation

powerful with increased computing power, the exciting and new GAN paradigm
[16] is quickly becoming the most popular generative model of data, having the
ability to generate artificial, but authentic-looking, images [48]. This is only a short
discussion on the successes of deep learning; refer to [17] for further applications.

1.2 Theoretical Contributions to Neural Networks

Although neural networks have shown the ability to perform well in a variety
of tasks, it is still currently unknown why they perform so well from a rigorous
mathematical perspective [36]. The results listed above are generally conceived
heuristically, and often the reason for doing something is because it worked well.
In some ways, this is advantageous: rather than being bogged down by the theory,
which can become unwieldy from the complexity of the models being analyzed, we
can just focus on using the computing power at our disposal to make improvements
in some domain. However, when businesses begin using neural networks more for
making important financial decisions, or autonomous vehicles employ CNNs to
interpret their surroundings, it is of paramount importance to understand the under-
lying mechanics of the networks in play. A deeper mathematical understanding
of neural networks will also improve their empirical performance, as we will be
able to interpret their failures more clearly. With that said, we will review some
useful theoretical contributions to the field of deep learning in this section, and also
consider their impact within applications.

1.2.1 Universal Approximation Properties

As mentioned in Sect. 1.1.1, confidence in neural networks waned heavily about 10
years after Rosenblatt’s perceptron of 1958 [46]. One of the contributors to this was
Minksy and Papert’s book, Perceptrons [40], which mathematically proved some
previously unknown limitations of single-layer perceptrons—in particular, their
inability to accurately classify the XOR predicate.6 However, this result does not
apply to modern neural networks with even a single hidden layer.7 It is actually quite
the opposite: it was discovered in 1989 that, under certain regularity conditions, a
neural network with a single hidden layer and a sigmoidal activation function could
approximate any continuous function [12]. Soon after, [28] extended this result

6Although there were other major contributions to the first so-called A.I. winter, including over-
promising to grant agencies when the current technology could not deliver; see [30] for more.
7Perceptrons have no hidden layers.

1.2 Theoretical Contributions to Neural Networks 5

to a generic activation function. Researchers again became optimistic about the
capabilities of neural networks and were beginning to understand their effectiveness
better.

Unfortunately, the approximation theorems only hold when we allow the hidden
layer of the neural network to grow arbitrarily large—perhaps even exponentially
with the number of inputs [51]—which severely reduces their applicability. Addi-
tionally, the focus on single-hidden-layer networks at the time detracted from
research on deeper networks, which are empirically more powerful and provably
more effective. Modern approximation theory in neural networks tends to focus
on the functional properties of deep networks, with [14] constructing a network
with two hidden layers to efficiently approximate a function which could not be
estimated by a single-hidden-layer network containing a number of units that was
polynomial in the number of inputs. Moreover, in [51], the authors construct a
sparsely-connected network with three hidden layers that has provably tight bounds
on its ability to approximate a generic function. These results, however, do not
aim to analyze a particular network structure that has been adopted by the deep
learning community; they can only infer the qualities of the networks that they have
constructed, while also providing a general sense of what might be a reasonable
bound on the error of a neural network. There exist other results of the same flavour,
with some papers studying the number of distinct regions carved out networks
containing the common Rectified Linear Unit (ReLU) activation function [42, 44],
described further in Sect. 1.2.2, but do not provide bounds on the error. Today’s
research into the approximation properties of neural networks has led us to adopt
the notion that the depth of a neural network is more important than its width, with
empirical results confirming this [22, 53], but we have not yet developed bounds on
the ability of a generic neural network to estimate a given function in terms of both
the network structure and number of training points.

1.2.2 Vanishing and Exploding Gradients

One of the earliest roadblocks to successfully training a neural network was the
problem of vanishing and exploding gradients, first extensively documented in
[25] (and reviewed in English in [27]). This problem was of utmost importance
to solve, even being referred to as the Fundamental Problem of Deep Learning
[50]. Essentially, for an RNN, the repeated application of the chain rule required
in derivative calculation for an L-layered network will generate terms of the form
λL, where λ ∈ R and L ∈ Z+. As L grows larger, these terms quickly go to 0 if
|λ| < 1, towards ∞ if |λ| > 1, or retain absolute value 1 if |λ| = 1. Thus, unless
|λ| = 1, it becomes difficult to train deep neural networks because gradients will
either vanish or unstably diverge.

This observation inspired the creation of the highly-successful LSTM network,
a popular modern RNN variant [26]. This network contains a number of gates
interacting together, with the main advancement being the memory cell that remains

6 1 Introduction and Motivation

largely unchanged as we pass through layers of the network. The Jacobian of
the operations of a single layer on the memory cell has norm very close (or
equal, depending on the variant) to 1 [26], which skirts the problem of vanishing
or exploding gradients and allows longer-term information to flow through the
network.

Another important feature of a neural network inspired by the problem of
vanishing and exploding gradients is the introduction of the ReLU activation
function8 f (x) = max(0, x) [43]. In the linear region of this activation, i.e.
where x > 0, the derivative is exactly 1. Thus, this activation function has
become far more popular than the logistic sigmoid—the original darling of neural
network researchers—since the sigmoid suffers badly from vanishing gradients as
the number of layers increases. Most applications today involve a large number
layers to efficiently approximate a richer class of functions, as we discussed in
Sect. 1.2.1, which has helped catapult the ReLU to the forefront of research. The
ReLU is not perfect, as in the region where x < 0, we have f ′(x) = 0, meaning that
some network components can die: they may be unable to exit the x < 0 regime.
If too many die, learning will be harshly impacted; thus, variants of the ReLU have
emerged which allow some nonzero gradient to flow when x < 0 [21, 38].

1.2.3 Wasserstein GAN

One of the most recent major developments in neural network research is the
creation of the GAN, which is a particular scheme for training an unsupervised
generative model in which the goal is to produce artificial, but realistic, samples
from some training data set [16]. In this framework, there are two networks which
are pitted against each other: a generator that attempts to generate realistic samples,
and a discriminator that attempts to distinguish between real and generated samples.
Practitioners began to notice that training GANs was unstable in its original form
[45], and suggested some heuristics to improve stability [48]. However, the problem
of instability was not fully understood until [2] analyzed the GAN through the
lens of differential geometry; they proved that the GAN objective function to be
minimized was (almost surely) always at its maximum value under some weak
assumptions about the data, which implied vanishing gradients in most regions
of the generator distribution. This insight led to the creation of the Wasserstein
GAN, which proposed to optimize the Wasserstein, or earth-mover, distance [54]
between the data distribution and the generator distribution [3]. The result is a more
reliable training procedure requiring fewer parameters but still producing high-
quality images, and we expect this new theoretical development to further improve
the impressive results produced by GANs.

8This was also inspired by biological function, as the ReLU activation function is a realistic
description of neuron firing [20].

1.4 Book Layout 7

1.3 Mathematical Representations

Although there has been some work done towards developing a theoretical under-
standing of neural networks, we still have a long way to go until the theory can
reliably improve results in application. We conjecture that one of the reasons
for this is the lack of a standard framework to analyze neural networks from
an algebraic perspective. The current approach of describing neural networks as
a computational graph and working over individual components [17] or using
automatic differentiation (reviewed in [5]) to calculate derivatives is excellent for
a majority of applications, as evidenced by the incredible empirical results that
deep learning has achieved [35]. However, such an approach does not provide a
satisfying theoretical description of the network as a whole, as it does not reference
vector spaces defining the network inputs, or the associated parameters, at each
layer. In simple networks, like the MLP, this is fine, but when dealing with more
complex networks, like the CNN, it can be difficult to determine exactly how all
of the components of the network fit together using a graphical approach or when
strictly dealing with scalars. Thus, in this book, we propose a generic mathematical
framework in which we can represent DNNs as vector-valued functions, taking
care to define all operations that we use very clearly. For example, in the view of
graphical models, it is quite common to differentiate nodes in the graph—which can
be either scalars or vectors—with respect to parameters [17]; in this work, we view
derivatives as operators which act on functions to produce new linear operators.
Furthermore, the representations and definitions that we use for vector- and matrix-
valued derivatives are unambiguous and clearly defined, which is not always the
case in neural networks. One of the biggest debates regarding matrix derivatives is
the numerator vs. denominator layout, described in [37]; our representation skirts
this issue entirely by exclusively differentiating functions.

1.4 Book Layout

This book is a purely theoretical work that aims to develop a mathematical
representation of neural networks that is clear, general, and easy to work with. To
accomplish this goal, we begin in Chap. 2 by defining the notation that we will
use throughout the work and review some important preliminary results. Then, in
Chap. 3, we will describe a generic neural network using this notation. We will also
write out a gradient descent algorithm acting directly over the vector space in which
the parameters are defined. We apply the generic framework to specific to specific
neural network structures in Chap. 4, demonstrating its effectiveness in describing
the MLP, CNN, and DAE, and also detailing how to modify and relax some of
the assumptions made. In Chap. 5, we further extend the framework to represent
RNNs, explicitly writing out two methods for gradient calculation and discussing
some extensions. Finally, we review the major contributions of this book in Chap. 6

8 1 Introduction and Motivation

and outline some possible directions for future work. A large portion of Chaps. 2,
3 and 4 appeared in our work on CNNs [8] and MLPs and DAEs [9], but we have
combined the results from those papers into a single work in this book.

References

1. D. Ackley, G. Hinton, T. Sejnowski, A learning algorithm for Boltzmann machines. Cogn. Sci.
9(1), 147–169 (1985)

2. M. Arjovsky, L. Bottou, Towards principled methods for training generative adversarial
networks. arXiv:1701.04862 (2017, preprint)

3. M. Arjovsky, S. Chintala, L. Bottou, Wasserstein GAN. arXiv:1701.07875 (2017, preprint)
4. D. Ballard, Modular learning in neural networks, in AAAI (1987), pp. 279–284.
5. A. Baydin, B. Pearlmutter, A. Radul, J. Siskind, Automatic differentiation in machine learning:

a survey. arXiv:1502.05767 (2015, preprint)
6. Y. Bengio, P. Lamblin, D. Popovici, H. Larochelle, Greedy layer-wise training of deep

networks, in Advances in Neural Information Processing Systems (2007), pp. 153–160
7. J. Berkson, Application of the logistic function to bio-assay. J. Am. Stat. Assoc. 39(227),

357–365 (1944)
8. A.L. Caterini, D.E. Chang, A geometric framework for convolutional neural networks.

arXiv:1608.04374 (2016, preprint)
9. A.L. Caterini, D.E. Chang, A novel representation of neural networks. arXiv:1610.01549

(2016, preprint)
10. D. Cireşan, U. Meier, L. Gambardella, J. Schmidhuber, Deep, big, simple neural nets for

handwritten digit recognition. Neural Comput. 22(12), 3207–3220 (2010)
11. D. Clevert, T. Unterthiner, S. Hochreiter, Fast and accurate deep network learning by

exponential linear units (ELUs). arXiv:1511.07289 (2015, preprint)
12. G. Cybenko, Approximation by superpositions of a sigmoidal function. Math. Control Signals

Syst. 2(4), 303–314 (1989)
13. Y. Dauphin, R. Pascanu, C. Gulcehre, K. Cho, S. Ganguli, Y. Bengio, Identifying and attacking

the saddle point problem in high-dimensional non-convex optimization, in Advances in Neural
Information Processing Systems (2014), pp. 2933–2941

14. R. Eldan, O. Shamir, The power of depth for feedforward neural networks, in Conference on
Learning Theory (2016), pp. 907–940

15. K. Fukushima, S. Miyake, Neocognitron: a self-organizing neural network model for a
mechanism of visual pattern recognition, in Competition and Cooperation in Neural Nets
(Springer, Berlin, 1982), pp. 267–285

16. I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville,
Y. Bengio, Generative adversarial nets, in Advances in Neural Information Processing Systems
(2014), pp. 2672–2680

17. I. Goodfellow, Y. Bengio, A. Courville, Deep Learning (MIT Press, Cambridge, 2016), http://
www.deeplearningbook.org.

18. B. Graham, Fractional max-pooling. arXiv:1412.6071 (2014, preprint)
19. A. Graves, Generating sequences with recurrent neural networks. arXiv:1308.0850 (2013,

preprint)
20. R. Hahnloser, R. Sarpeshkar, M.A. Mahowald, R. Douglas, H. Seung, Digital selection and

analogue amplification coexist in a cortex-inspired silicon circuit. Nature 405(6789), 947–951
(2000)

21. K. He, X. Zhang, S. Ren, J. Sun, Delving deep into rectifiers: surpassing human-level
performance on imagenet classification, in Proceedings of the IEEE International Conference
on Computer Vision (2015), pp. 1026–1034

http://www.deeplearningbook.org
http://www.deeplearningbook.org

References 9

22. K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (2016), pp. 770–778

23. K. He, G. Gkioxari, P. Dollár, R. Girshick, Mask R-CNN. arXiv:1703.06870 (2017, preprint)
24. G. Hinton, S. Osindero, Y. Teh, A fast learning algorithm for deep belief nets. Neural Comput.

18(7), 1527–1554 (2006)
25. S. Hochreiter, Untersuchungen zu dynamischen neuronalen netzen, Diploma, Technische

Universität München, 91, 1991
26. S. Hochreiter, J. Schmidhuber, Long short-term memory. Neural Comput. 9(8), 1735–1780

(1997)
27. S. Hochreiter, Y. Bengio, P. Frasconi, J. Schmidhuber, Gradient flow in recurrent nets: the

difficulty of learning long-term dependencies. In: A Field Guide to Dynamical Recurrent
Neural Networks. IEEE Press (2001)

28. K. Hornik, Approximation capabilities of multilayer feedforward networks. Neural Netw. 4(2),
251–257 (1991)

29. A. Ivakhnenko, V. Lapa, Cybernetic predicting devices, Technical report, DTIC Document,
1966

30. L. Kanal, Perceptron, in Encyclopedia of Computer Science (Wiley, Chichester, 2003)
31. Y. LeCun, D. Touresky, G. Hinton, T. Sejnowski, A theoretical framework for back-

propagation, in The Connectionist Models Summer School, vol. 1 (1988), pp. 21–28
32. Y. LeCun, B. Boser, J. Denker, D. Henderson, R. Howard, W. Hubbard, L. Jackel, Handwritten

digit recognition with a back-propagation network, in Advances in Neural Information
Processing Systems (1990), pp. 396–404

33. Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning applied to document
recognition. Proc. IEEE 86(11), 2278–2324 (1998)

34. Y. LeCun, C. Cortes, C. Burges, Mnist handwritten digit database. AT&T Labs [Online]. http://
yann.lecun.com/exdb/mnist, 2 (2010)

35. Y. LeCun, Y. Bengio, G. Hinton, Deep learning. Nature 521(7553), 436–444 (2015)
36. H. Lin, M. Tegmark, Why does deep and cheap learning work so well? arXiv:1608.08225

(2016, preprint)
37. H. Lutkepohl, Handbook of Matrices (Wiley, Hoboken, 1997)
38. A. Maas, A. Hannun, A. Ng, Rectifier nonlinearities improve neural network acoustic models,

in Proceedings of ICML, vol. 30 (2013)
39. W. McCulloch, W. Pitts, A logical calculus of the ideas immanent in nervous activity. Bull.

Math. Biol. 5(4), 115–133 (1943)
40. M. Minsky, S. Papert, Perceptrons (MIT press, Cambridge, 1969)
41. V. Mnih, K. Kavukcuoglu, D. Silver, A. Rusu, J. Veness, M. Bellemare, A. Graves, M. Ried-

miller et al., Human-level control through deep reinforcement learning. Nature 518(7540),
529–533 (2015)

42. G. Montufar, R. Pascanu, K. Cho, Y. Bengio, On the number of linear regions of deep neural
networks, in Advances in Neural Information Processing Systems (2014), pp. 2924–2932

43. V. Nair, G. Hinton, Rectified linear units improve restricted Boltzmann machines, in Pro-
ceedings of the 27th International Conference on Machine Learning (ICML-10) (2010), pp.
807–814

44. R. Pascanu, G. Montufar, Y. Bengio, On the number of response regions of deep feed forward
networks with piece-wise linear activations. arXiv:1312.6098 (2013, preprint)

45. A. Radford, L. Metz, S. Chintala, Unsupervised representation learning with deep convolu-
tional generative adversarial networks. arXiv:1511.06434 (2015, preprint)

46. F. Rosenblatt, The perceptron: a probabilistic model for information storage and organization
in the brain. Psychol. Rev. 65(6), 386 (1958)

47. D. Rumelhart, G. Hinton, R. Williams, Learning internal representations by error propagation,
Technical report, California Univ San Diego La Jolla Inst for Cognitive Science, 1985

48. T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, X. Chen, Improved
techniques for training GANs, in Advances in Neural Information Processing Systems (2016),
pp. 2226–2234

http://yann.lecun.com/exdb/mnist
http://yann.lecun.com/exdb/mnist

10 1 Introduction and Motivation

49. G. Saon, T. Sercu, S.J. Rennie, H. Jeff Kuo, The IBM 2016 English conversational telephone
speech recognition system. arXiv:1604.08242 (2016, preprint)

50. J. Schmidhuber, Deep learning in neural networks: an overview. Neural Netw. 61, 85–117
(2015)

51. U. Shaham, A. Cloninger, R. Coifman, Provable approximation properties for deep neural
networks. Appl. Comput. Harmon. Anal. 44(3), 537–557 (2018)

52. D. Silver, A. Huang, C. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, et al., Mastering
the game of go with deep neural networks and tree search. Nature 529(7587), 484–489 (2016)

53. K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recogni-
tion. arXiv:1409.1556 (2014, preprint)

54. S. Vallender, Calculation of the wasserstein distance between probability distributions on the
line. Theory Prob. Appl. 18(4), 784–786 (1974)

55. O. Vinyals, A. Toshev, S. Bengio, D. Erhan, Show and tell: A neural image caption generator,
in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2015),
pp. 3156–3164

56. P. Werbos, Applications of advances in nonlinear sensitivity analysis, in System Modeling and
Optimization (Springer, Berlin, 1982), pp. 762–770

57. B. Widrow, M. Hoff, Associative storage and retrieval of digital information in networks of
adaptive “neurons”, in Biological Prototypes and Synthetic Systems (Springer, Berlin, 1962),
pp. 160–160

58. R. Williams, D. Zipser, A learning algorithm for continually running fully recurrent neural
networks. Neural Comput. 1(2), 270–280 (1989)

59. Z. Xie, A. Avati, N. Arivazhagan, D. Jurafsky, A. Ng, Neural language correction with
character-based attention. arXiv:1603.09727 (2016, preprint)

Chapter 2
Mathematical Preliminaries

We discussed some of the mathematical theory in neural networks in the previous
chapter, and in this book we would like to expand on this theory by providing a
standard framework in which we can analyze neural networks. Current mathemati-
cal descriptions of neural networks are either exclusively based on scalars or based
on loosely-defined vector-valued derivatives, which we hope to improve upon. Thus,
in this chapter we will begin to build up the framework by introducing prerequisite
mathematical concepts and notation for handling generic vector-valued maps. The
notation that we will introduce is standard within vector calculus and provides us
with a set of tools to establish a generic neural network structure. Even though some
of the concepts in this chapter are quite basic, it is necessary to solidify the symbols
and language that we will use throughout the book to avoid the pitfall of having
ambiguous notation.

The first topic that we will examine is notation for linear maps, which are
useful not only in the feedforward aspect of a generic network, but also in
backpropagation. Then we will define vector-valued derivative maps, which we
will require when performing gradient descent steps to optimize the neural network.
To represent the dependence of a neural network on its parameters, we will then
introduce the notion of parameter-dependent maps, including distinct notation
for derivatives with respect to the parameters as opposed to the main variables.
Finally, we will define elementwise functions, which are used in neural networks
as nonlinear activation functions, i.e. to apply a nonlinear function to individual
coordinates of a vector. A large portion of this chapter appeared in some form in
[2, Section 2], but we have added more detail to favour clarity over brevity.

© The Author(s) 2018
A. L. Caterini, D. E. Chang, Deep Neural Networks in a Mathematical Framework,
SpringerBriefs in Computer Science, https://doi.org/10.1007/978-3-319-75304-1_2

11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75304-1_2&domain=pdf
https://doi.org/10.1007/978-3-319-75304-1_2

12 2 Mathematical Preliminaries

2.1 Linear Maps, Bilinear Maps, and Adjoints

Let us start by considering three finite-dimensional and real inner product spaces
E1, E2, and E3, with the inner product denoted 〈 , 〉 on each space. We will denote
the space of linear maps from E1 to E2 by L(E1;E2), and the space of bilinear maps
from E1 × E2 to E3 by L(E1, E2;E3). For any bilinear map B ∈ L(E1, E2;E3)

and any vector e1 ∈ E1, we can define a linear map (e1�B) ∈ L(E2;E3) as

(e1�B) · e2 = B(e1, e2)

for all e2 ∈ E2. Similarly, for any e2 ∈ E2, we can define a linear map (B �e2) ∈
L(E1;E3) as

(B �e2) · e1 = B(e1, e2).

for all e1 ∈ E1. We will refer to the symbols � and � as the left-hook and right-
hook, respectively.

In this work we will also often encounter the direct product and tensor product
spaces, and we will see how the inner product extends to these. Suppose we now
have r inner product spaces, {Ei}i∈[r], where r ∈ Z+ and [r] ≡ {1, . . . , r} denotes
the set of natural numbers from 1 to r , inclusive. We can naturally extend the inner
product to both the direct product of r inner product spaces, E1 × · · · × Er , and the
tensor product, E1 ⊗ · · · ⊗ Er , as follows [3]:

〈(e1, · · · , er), (ē1, · · · , ēr)〉 =
r∑

i=1

〈ei, ēi〉,

〈e1 ⊗ · · · ⊗ er , ē1 ⊗ · · · ⊗ ēr 〉 =
r∏

i=1

〈ei, ēi〉,

where ei, ēi ∈ Ei for all i ∈ [r]. In particular, for any collection {Ui,Ui}i∈[r], where
Ui and Ui are both vectors in some inner product space H for all i ∈ [r], we can
show that the following holds when {ei}i∈[r] is an orthonormal set:

r∑

i=1

〈Ui, Ui〉 =
〈

r∑

i=1

Ui ⊗ ei,

r∑

i=1

Ui ⊗ ei

〉
. (2.1)

We will use the standard definition of the adjoint L∗ of a linear map L ∈
L(E1;E2): L∗ is defined as the linear map satisfying

〈L∗ · e2, e1〉 = 〈e2, L · e1〉

2.2 Derivatives 13

for all e1 ∈ E1 and e2 ∈ E2. Notice that L∗ ∈ L(E2;E1)—it is a linear map
exchanging the domain and codomain of L. The adjoint operator satisfies the
direction reversing property:

(L2 · L1)
∗ = L∗

1 · L∗
2

for all L1 ∈ L(E1;E2) and L2 ∈ L(E2;E3). A linear map L ∈ L(E1;E1) is said
to be self-adjoint if L∗ = L.

Note that we have been using the · notation to indicate the operation of a linear
map on a vector and the composition of two linear maps, i.e.

L · e1 ≡ L(e1) and L2 · L1 ≡ L2 ◦ L1.

We will continue to use this notation throughout the text as it is standard and simple.

2.2 Derivatives

In this section, we will present notation for derivatives in accordance with [1,
Chapter 2, Section 3] and [4, Chapter 6, Section 4]. Since derivative maps are linear,
this section relies on the notation developed in the previous section. The results
in this section lay the framework for taking the derivatives of a neural network
with respect to its parameters, and eventually elucidate a compact form for the
backpropagation algorithm.

2.2.1 First Derivatives

First, we consider a function f : E1 → E2, where E1 and E2 are inner product
spaces. The first derivative map of f , denoted Df , is a map from E1 to L(E1;E2),
operating as x �→ Df (x) for any x ∈ E1. The map Df (x) ∈ L(E1;E2) operates in
the following manner for any v ∈ E1:

Df (x) · v = d

dt
f (x + tv)

∣∣∣∣
t=0

. (2.2)

For each x ∈ E1, the adjoint of the derivative Df (x) ∈ L(E1;E2) is
well-defined, and we will denote it D∗f (x) instead of Df (x)∗ for the sake of
convenience. Then, D∗f : E1 → L(E2;E1) denotes the map that takes each point
x ∈ E1 to D∗f (x) ∈ L(E2;E1).

Now, let us consider two maps f1 : E1 → E2 and f2 : E2 → E3 that are C1, i.e.
continuously differentiable, where E3 is another inner product space. The derivative

14 2 Mathematical Preliminaries

of their composition, D(f2 ◦ f1)(x), is a linear map from E1 to E3 for any x ∈ E1,
and is calculated using the well-known chain rule, i.e.

D(f2 ◦ f1)(x) = Df2(f1(x)) · Df1(x). (2.3)

2.2.2 Second Derivatives

We can safely assume that every map here is C2, i.e., twice continuously differ-
entiable. The second derivative map of f , denoted D2f , is a map from E1 to
L(E1, E1;E2), which operates as x �→ D2f (x) for any x ∈ E1. The bilinear map
D2f (x) ∈ L(E1, E1;E2) operates as

D2f (x) · (v1, v2) = D (Df (x) · v2) · v1 = d

dt
(Df (x + tv1) · v2)

∣∣∣∣
t=0

(2.4)

for any v1, v2 ∈ E1. The map D2f (x) is symmetric, i.e. D2f (x) · (v1, v2) =
D2f (x) · (v2, v1) for all v1, v2 ∈ E1. We can also use the left- and right-hook
notation to turn the second derivative into a linear map. In particular, (v�D2f (x))

and (D2f (x)�v) ∈ L(E1;E2) for any x, v ∈ E1.
Two useful identities exist for vector-valued second derivatives—the higher-

order chain rule and the result of mixing D with D∗—which we will describe in
the next two lemmas.

Lemma 2.1 For any x, v1, v2 ∈ E1,

D2(f2 ◦ f1)(x) · (v1, v2) = D2f2(f1(x)) · (Df1(x) · v1, Df1(x) · v2)

+ Df2(f1(x)) · D2f1(x) · (v1, v2),

where f1 : E1 → E2 is C2 and f2 : E2 → E3 is C2 for vector spaces E1, E2,

and E3.

Proof We can prove this directly from the definition of the derivative.

D2(f2 ◦ f1)(x) · (v1, v2) = D (D(f2 ◦ f1)(x) · v2) · v1

= D (Df2(f1(x)) · Df1(x) · v2) · v1 (2.5)

= d

dt
(Df2(f1(x + tv1)) · Df1(x + tv1) · v2)

∣∣∣∣
t=0

= d

dt
(Df2(f1(x + tv1)) · Df1(x) · v2)

∣∣∣∣
t=0

(2.6)

+ Df2(f1(x)) · d

dt
(Df1(x + tv1) · v2)

∣∣∣∣
t=0

2.3 Parameter-Dependent Maps 15

= D2f2(f1(x)) ·
(

d

dt
f1(x + tv1)

∣∣∣∣
t=0

, Df1(x) · v2

)

(2.7)

+ Df2(f1(x)) · D2f1(x) · (v1, v2)

= D2f2(f1(x)) · (Df1(x) · v1, Df1(x) · v2)

+ Df2(f1(x)) · D2f1(x) · (v1, v2),

where (2.5) is from (2.3), (2.6) is from the standard product rule, and (2.7) is from
the standard chain rule along with the definition of the second derivative.

Lemma 2.2 Consider three inner product spaces E1, E2, and E3, and two func-
tions f : E1 → E2 and g : E2 → E3. Then, for any x, v ∈ E1 and w ∈ E3,

D
(
D∗g(f (x)) · w

) · v =
(
(Df (x) · v)�D2g(f (x))

)∗ · w.

Proof Pair the derivative of the map D∗g(f (x)) · w with any y ∈ E2 in the inner
product:

〈y, D
(
D∗g(f (x)) · w

) · v〉 = D
(〈y, D∗g(f (x)) · w〉) · v

= D (〈Dg(f (x)) · y, w〉) · v

= 〈D2g(f (x)) · (Df (x) · v, y), w〉
= 〈
(
(Df (x) · v)�D2g(f (x))

)
· y, w〉

= 〈y,
(
(Df (x) · v)�D2g(f (x))

)∗ · w〉.

Since this holds for any y ∈ E2, the proof is complete.

2.3 Parameter-Dependent Maps

We will now extend the derivative notation developed in the previous section to
parameter-dependent maps: maps containing both a state variable and a parameter.
We will heavily rely on parameter-dependent maps because we can regard the input
of each layer of a feed-forward neural network as the current state of the network,
which will be evolved according to the parameters at the current layer. To formalize
this notion, suppose f is a parameter-dependent map from E1 × H1 to E2, i.e.
f (x; θ) ∈ E2 for any x ∈ E1 and θ ∈ H1, where H1 is also an inner product space.
In this context, we will refer to x ∈ E1 as the state for f , whereas θ ∈ H1 is the
parameter.

16 2 Mathematical Preliminaries

2.3.1 First Derivatives

We will use the notation presented in (2.2) to denote the derivative of f with respect
to the state variable: for all v ∈ E1,

Df (x; θ) · v = d

dt
f (x + tv; θ)

∣∣∣∣
t=0

.

Also, D2f (x; θ) · (v1, v2) = D (Df (x; θ) · v2) · v1 as before. However, we will
introduce new notation to denote the derivative of f with respect to the parameters
as follows:

∇f (x; θ) · u = d

dt
f (x; θ + tu)

∣∣∣∣
t=0

for any u ∈ H1. Note that ∇f (x) ∈ L(H1;E2). When f depends on two parameters
as f (x; θ1, θ2), we will use the notation ∇θ1f (x; θ1, θ2) to explicitly denote
differentiation with respect to the parameter θ1 when the distinction is necessary. We
will also retain the adjoint notation such that ∇∗f (x) ∈ L(E2;H1). We will also
require a chain rule for the composition of functions involving parameter-dependent
maps, especially when not all of the functions in the composition depend on the
parameter, and this appears in Lemma 2.3.

Lemma 2.3 Suppose that E1, E2, E3, and H1 are inner product spaces, and g :
E2 → E3 and f : E1 × H1 → E2 are both C1 functions. Then, the derivative of
their composition with respect to the second argument of f , i.e. ∇(g ◦ f)(x; θ) ∈
L(H1;E3), is given by

∇(g ◦ f)(x; θ) = Dg(f (x; θ)) · ∇f (x; θ), (2.8)

for any x ∈ E1 and θ ∈ H1.

Proof This is just an extension of (2.3).

2.3.2 Higher-Order Derivatives

We can define the mixed partial derivative maps, ∇Df (x; θ) ∈ L(H1, E1;E2) and
D∇f (x; θ) ∈ L(E1,H1;E2), as

∇Df (x; θ) · (u, e) = d

dt
(Df (x; θ + tu) · e)

∣∣∣∣
t=0

and

D∇f (x; θ) · (e, u) = d

dt
(∇f (x + te; θ) · u)

∣∣∣∣
t=0

2.4 Elementwise Functions 17

for any e ∈ E1, u ∈ H1. Note that if f is C2, then

D∇f (x; θ) · (e, u) = ∇Df (x; θ) · (u, e).

A useful identity similar to Lemma 2.2 exists when mixing ∇∗ and D.

Lemma 2.4 Consider three inner product spaces E1, E2, and H1, and a
parameter-dependent map g : E1 × H1 → E2. Then, for any x, v ∈ E1, w ∈ E2,
and θ ∈ H1,

D
(∇∗g(x; θ) · w

) · v = (∇Dg(x; θ)�v)∗ · w = (v�D∇g(x; θ))∗ · w.

Proof Prove similarly to Lemma 2.2 by choosing y ∈ H1 as a test vector.

2.4 Elementwise Functions

Layered neural networks conventionally contain a nonlinear activation function
operating on individual coordinates—also known as an elementwise nonlinearity—
placed at the end of each layer. Without these, neural networks would be nothing
more than over-parametrized linear models; it is therefore important to understand
the properties of elementwise functions. To this end, consider an inner product space
E of dimension n, and let {ek}nk=1 be an orthonormal basis of E. We define an
elementwise function as a map Ψ : E → E of the form

Ψ (v) =
n∑

k=1

ψ(〈v, ek〉)ek, (2.9)

where ψ : R → R—which we will refer to as the elementwise operation associated
with Ψ —defines the operation of the elementwise function over the coordinates
{〈v, ek〉}k of the vector v ∈ E with respect to the chosen basis. If we use the
convention that 〈v, ek〉 ≡ vk ∈ R, we can rewrite (2.9) as

Ψ (v) =
n∑

k=1

ψ(vk)ek,

but we will tend to avoid this as it becomes confusing when there are multiple
subscripts. The operator Ψ is basis-dependent, but {ek}nk=1 can be any orthonormal
basis of E.

We define the associated elementwise first derivative, Ψ ′ : E → E, as

Ψ ′(v) =
n∑

k=1

ψ ′(〈v, ek〉)ek. (2.10)

18 2 Mathematical Preliminaries

Similarly, we define the elementwise second derivative Ψ ′′ : E → E as

Ψ ′′(v) =
n∑

k=1

ψ ′′(〈v, ek〉)ek. (2.11)

We can also re-write Eqs. (2.10) and (2.11) using 〈v, ek〉 ≡ vk as

Ψ ′(v) =
n∑

k=1

ψ ′(vk)ek

and

Ψ ′′(v) =
n∑

k=1

ψ ′′(vk)ek.

2.4.1 Hadamard Product

To assist in the calculation of derivatives of elementwise functions, we will define a
symmetric bilinear operator � ∈ L(E,E;E) over the orthogonal basis {ek}nk=1 as

ek � ek′ ≡ δk,k′ek, (2.12)

where δk,k′ is the Kronecker delta. This is the standard Hadamard product—also
known as elementwise multiplication—when E = R

n and {ek}nk=1 is the standard
basis of Rn, which we can see by calculating v � v′ for any v, v′ ∈ R

n:

v � v′ =
(

n∑

k=1

vkek

)
�
(

n∑

k′=1

v′
k′ek′

)

=
n∑

k,k′=1

vkv
′
k′ek � ek′

=
n∑

k,k′=1

vkv
′
k′δk,k′ek

=
n∑

k=1

vkv
′
kek,

where we have used the convention that 〈v, ek〉 ≡ vk . However, when E �= R
n

or {ek}nk=1 is not the standard basis, we can regard � as a generalization of
the Hadamard product. For all y, v, v′ ∈ E, the Hadamard product satisfies the
following properties:

2.4 Elementwise Functions 19

v � v′ = v′ � v,

(v � v′) � y = v � (v′ � y), (2.13)

〈y, v � v′〉 = 〈v � y, v′〉 = 〈y � v′, v〉.

2.4.2 Derivatives of Elementwise Functions

We can now compute the derivative of elementwise functions using the Hadamard
product as described below.

Proposition 2.1 Let Ψ : E → E be an elementwise function over an inner product
space E as defined in (2.9). Then, for any v, z ∈ E,

DΨ (z) · v = Ψ ′(z) � v.

Furthermore, DΨ (z) is self-adjoint for all z ∈ E, i.e. D∗Ψ (z) = DΨ (z) for all
z ∈ E.

Proof Let ψ be the elementwise operation associated with Ψ . Then,

DΨ (z) · v = d

dt
Ψ (z + tv)

∣∣∣∣
t=0

= d

dt

n∑

k=1

ψ(〈z + tv, ek〉)ek

∣∣∣∣
t=0

=
n∑

k=1

ψ ′(〈z, ek〉)〈v, ek〉ek

= Ψ ′(z) � v,

where the third equality follows from the chain rule and linearity of the derivative.
Furthermore, for any y ∈ E,

〈y, DΨ (z) · v〉 = 〈y, Ψ ′(z) � v〉 = 〈Ψ ′(z) � y, v〉 = 〈DΨ (z) · y, v〉.
Since 〈y, DΨ (z) · v〉 = 〈DΨ (z) · y, v〉 for any v, y, z ∈ E, DΨ (z) is self-adjoint.

Proposition 2.2 Let Ψ : E → E be an elementwise function over an inner product
space E as defined in (2.9). Then, for any v1, v2, z ∈ E,

D2Ψ (z) · (v1, v2) = Ψ ′′(z) � v1 � v2. (2.14)

Furthermore,
(
v1�D2Ψ (z)

)
and

(
D2Ψ (z)�v2

)
are both self-adjoint linear maps

for any v1, v2, z ∈ E.

20 2 Mathematical Preliminaries

Proof We can prove (2.14) directly:

D2Ψ (z) · (v1, v2) = D(DΨ (z) · v2) · v1

= D(Ψ ′(z) � v2) · v1

= (Ψ ′′(z) � v1) � v2,

where the third equality follows since Ψ ′(z) � v2 is an elementwise function in z.
Also, for any y ∈ E,

〈y,
(
v1�D2Ψ (z)

)
· v2〉 = 〈y, D2Ψ (z) · (v1, v2)〉

= 〈y, Ψ ′′(z) � v1 � v2〉
= 〈Ψ ′′(z) � v1 � y, v2〉
= 〈
(
v1�D2Ψ (z)

)
· y, v2〉.

This implies that the map
(
v1�D2Ψ (z)

)
is self-adjoint for any v1, z ∈ E. From

the symmetry of the second derivative D2Ψ (z), the map
(
D2Ψ (z)�v1

)
is also self-

adjoint for any v1, z ∈ E. This completes the proof.

2.4.3 The Softmax and Elementwise Log Functions

We will often encounter the softmax and elementwise log functions together when
using neural networks for classification, so we will dedicate a short section to them.
The softmax function takes in an input in a generic inner product space E and
exponentially scales it so that its components sum to 1. More specifically, we define
the softmax function σ : E → E in terms of the elementwise exponential function
Exp1 as

σ(x) = 1

〈1, Exp(x)〉 Exp(x), (2.15)

where x ∈ E and 1 ≡ ∑n
k=1 ek for an orthonormal basis of E given by {ek}nk=1.

We can refer to 1 as the all-ones vector, particularly when {ek} is the standard basis.
Notice that the first term of (2.15) is a scalar, so the multiplication is well-defined.
We will compute the derivative of (2.15) in the following lemma.

1The elementwise function with elementwise operation exp.

2.4 Elementwise Functions 21

Lemma 2.5 Let x and v be any vectors in an inner product space E. Then,

Dσ(x) · v = σ(x) � v − 〈σ(x), v〉σ(x).

Furthermore, Dσ(x) is self-adjoint for any x ∈ E.

Proof First note that D Exp(x) · v = Exp(x)� v from Proposition 2.1. Then, by the
product rule,

Dσ(x) · v =
[

D

(
1

〈1, Exp(x)〉
)

· v

]
Exp(x) + 1

〈1, Exp(x)〉D Exp(x) · v

= 1

〈1, Exp(x)〉
[
−〈1, D Exp(x) · v〉

〈1, Exp(x)〉 Exp(x) + Exp(x) � v

]

= −〈1, Exp(x) � v〉
〈1, Exp(x)〉 σ(x) + σ(x) � v

= σ(x) � v − 〈σ(x), v〉σ(x),

which proves the first statement. As for the adjoint, pick any y ∈ E. Then,

〈y, Dσ(x) · v〉 = 〈y, σ (x) � v − 〈σ(x), v〉σ(x)〉
= 〈y � σ(x), v〉 − 〈y, σ (x)〉〈σ(x), v〉
= 〈σ(x) � y − 〈σ(x), y〉σ(x), v〉,

by the symmetry of the inner product. We have thus proven that

D∗σ(x) · y = σ(x) � y − 〈σ(x), y〉σ(x),

i.e. D∗σ(x) = Dσ(x).

In the classification setting in neural networks, the loss function will often
contain the elementwise log function, Log, composed with the softmax function,
i.e. Log ◦ σ will often appear. We will require the adjoint of the derivative map of
this composition later and thus we calculate it in the following lemma.

Lemma 2.6 Let v, x ∈ E, where E is an inner product space. Then,

D∗ (Log ◦ σ) (x) · v = Dσ(x) · D Log(σ (x)) · v = v − 〈1, v〉σ(x).

Proof First note that D (Log ◦ σ) (x) = D Log(σ (x)) · Dσ(x) by the chain
rule (2.3). Then, since Log is an elementwise function, D Log(σ (x)) is self-adjoint
by Proposition 2.1. By Lemma 2.5, Dσ(x) is also self-adjoint. Thus, by the reversing
property of the adjoint,

D∗ (Log ◦ σ) (x) = Dσ(x) · D Log(σ (x)).

22 2 Mathematical Preliminaries

As for the second part, first note that σ(x) � Log′(σ (x)) = 1, since Log′ has
elementwise operation log′(z) = 1

z
for any z ∈ R, and each coordinate of σ(x)

is greater than 0 for all x. Also, 1 � w = w for any w ∈ E. Therefore,

Dσ(x) · D Log(σ (x)) · v = Dσ(x) · (Log′(σ (x)) � v
)

= σ(x) � (Log′(σ (x)) � v
)

− 〈σ(x), Log′(σ (x)) � v〉σ(x)

= v − 〈σ(x) � Log′(σ (x)), v〉σ(x)

= v − 〈1, v〉σ(x),

where we have used the properties of the Hadamard product from (2.13) throughout
the proof.

Remark 2.1 In classification, v will be an encoding of the observed class of the data.
We can represent this using a one-hot encoding, which means that if we observe
class i, then the ith coordinate of v will be set to 1 and the other coordinates will be
set to 0. In the context of Lemma 2.6, this means that 〈1, v〉 = 1, implying that

Dσ(x) · D Log(σ (x)) · v = v − σ(x).

2.5 Conclusion

In this chapter, we have presented mathematical tools for handling vector-valued
functions that will arise when describing generic neural networks. In particular,
we have introduced notation and theory surrounding linear maps, derivatives,
parameter-dependent maps, and elementwise functions. Familiarity with the mate-
rial presented in this chapter is paramount for understanding the rest of this book.

References

1. R. Abraham, J. Marsden, T. Ratiu, Manifolds, Tensor Analysis, and Applications, 2nd edn.
(Springer, New York, 1988)

2. A.L. Caterini, D.E. Chang, A novel representation of neural networks. arXiv:1610.01549 (2016,
preprint)

3. W. Greub, Multilinear Algebra (Springer, New York, 1978)
4. J. Marsden, Elementary Classical Analysis (Freeman, New York, 1974)

Chapter 3
Generic Representation of Neural
Networks

In the previous chapter, we took the first step towards creating a standard framework
for neural networks by describing mathematical tools for vector-valued functions
and their derivatives. We will use these tools in this chapter to represent the
operations employed in a generic deep neural network. Since neural networks have
been empirically shown to reap performance benefits from stacking increasingly
more layers in succession [2], it is important to develop a solid and concise theory
for repeated function composition as it pertains to neural networks, and we will
see how this can be done in this chapter. We will also compute derivatives of these
functions with respect to the parameters at each layer since neural networks often
learn their parameters via some form of gradient descent. The derivative maps
that we compute will remain in the same vector space as the parameters, which
will allow us to perform gradient descent naturally over these vector spaces. This
approach contrasts with common approaches to neural network modelling where the
parameters are broken down into their components. We can avoid this unnecessary
operation using the framework that we will describe.

We will begin this chapter by formulating a generic neural network as the
composition of parameter-dependent functions. We will then introduce standard loss
functions based on this composition for both the regression and classification cases,
and take their derivatives with respect to the parameters at each layer. There are
some commonalities between these two cases; in particular, both employ the same
form of error backpropagation, albeit with a slightly differing initialization. We
are able to express this in terms of adjoints of derivative maps over generic vector
spaces, which has not been explored before. We will then outline a concise algorithm
for computing derivatives of the loss functions with respect to their parameters
directly over the vector space in which the parameters are defined. This helps to
clarify the theoretical results presented. We will also present a higher-order loss
function that imposes a penalty on the derivative towards the end of this chapter.
This demonstrates one way to extend the framework that we have developed to a

© The Author(s) 2018
A. L. Caterini, D. E. Chang, Deep Neural Networks in a Mathematical Framework,
SpringerBriefs in Computer Science, https://doi.org/10.1007/978-3-319-75304-1_3

23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75304-1_3&domain=pdf
https://doi.org/10.1007/978-3-319-75304-1_3

24 3 Generic Representation of Neural Networks

more complicated loss function and also demonstrates its flexibility. A condensed
version of this chapter appeared in [1, Section 3], but we have again expanded it as
in the previous chapter.

3.1 Neural Network Formulation

We can represent a deep neural network with L layers as the composition of L

functions fi : Ei × Hi → Ei+1, where Ei,Hi, and Ei+1 are inner product spaces
for all i ∈ [L]. We will refer to the variables xi ∈ Ei as state variables, and the
variables θi ∈ Hi as parameters. Throughout this section, we will often suppress the
dependence of the layerwise function fi on the parameter θi for ease of composition,
i.e. fi is understood as a function from Ei to Ei+1 depending on θi ∈ Hi . We can
then write down the output of a neural network for a generic input x ∈ E1 using
this suppression convention as a function F : E1 × (H1 × · · · × HL) → EL+1
according to

F(x; θ) = (fL ◦ · · · ◦ f1) (x), (3.1)

where each fi is dependent on the parameter θi ∈ Hi , and θ represents the parameter
set {θ1, . . . , θL}. For now, we will assume that each parameter θi is independent of
the other parameters {θj }j �=i , but we will see how to modify this assumption when
working with autoencoders and recurrent neural networks in future chapters.

We will now introduce some maps to assist in the calculation of derivatives. First,
the head map at layer i, αi : E1 → Ei+1, is given by

αi = fi ◦ · · · ◦ f1 (3.2)

for each i ∈ [L]. Note that αi implicitly depends on the parameters {θ1, . . . , θi}. For
convenience, set α0 = id: the identity map on E1. Similarly, we can define the tail
map at layer i, ωi : Ei → EL+1, as

ωi = fL ◦ · · · ◦ fi (3.3)

for each i ∈ [L]. The map ωi implicitly depends on {θi, . . . , θL}. Again for
convenience, set ωL+1 to be the identity map on EL+1. We can easily show that
the following hold for all i ∈ [L]:

F = ωi+1 ◦ αi, ωi = ωi+1 ◦ fi, αi = fi ◦ αi−1. (3.4)

The equations in (3.4) imply that the output F can be decomposed into

F = ωi+1 ◦ fi ◦ αi−1

for all i ∈ [L], where both ωi+1 and αi−1 have no dependence on the parameter θi .

3.2 Loss Functions and Gradient Descent 25

3.2 Loss Functions and Gradient Descent

The goal of a neural network is to optimize some loss function J with respect to the
parameters θ over a set of n network inputs D = {(x(1), y(1)), . . . , (x(n), y(n))},
where x(j) ∈ E1 is the j th input data point with associated response or target
y(j) ∈ EL+1. Most optimization methods are gradient-based, meaning that we must
calculate the gradient of J with respect to the parameters at each layer i ∈ [L].

We will begin this section by introducing the loss functions for both the
regression and classification setting. Although they share some similarities, these
two cases must be considered separately since they have different loss functions.
We will take the derivatives of these loss functions for a single data point (x, y) ≡
(x(j), y(j)) for some j ∈ [n], and then concisely present error backpropagation.
Finally, we will present algorithms for performing gradient descent steps for both
regression and classification, and we will also discuss how to incorporate the
common
2-regularization, also known as weight decay [4], into this framework.
Note that we will often write

xi = αi−1(x)

throughout this section for ease of notation.
We will first present a result to compute ∇∗

θi
F (x; θ), as this will occur in both the

regression and classification cases.

Lemma 3.1 For any x ∈ E1 and i ∈ [L],
∇∗

θi
F (x; θ) = ∇∗

θi
fi(xi) · D∗ωi+1(xi+1), (3.5)

where F is defined as in (3.1), αi is defined as in (3.2), ωi defined as in (3.3), and
xi = αi−1(x).

Proof Apply the chain rule from (2.8) to F = ωi+1 ◦ fi ◦ αi−1 according to

∇θi
F (x; θ) = Dωi+1(fi(αi−1(x))) · ∇θi

fi(αi−1(x))

= Dωi+1(xi+1) · ∇θi
fi(xi),

since neither ωi+1 nor αi−1 depend on θi . Then, by taking the adjoint and applying
the reversing property we can obtain (3.5).

3.2.1 Regression

In the case of regression, the target variable y ∈ EL+1 can be any generic vector
of real numbers. Thus, for a single data point, the most common loss function to
consider is the squared loss, given by

JR(x, y; θ) = 1

2
‖y − F(x; θ)‖2 = 1

2
〈y − F(x; θ), y − F(x; θ)〉. (3.6)

26 3 Generic Representation of Neural Networks

In this case, the network prediction ŷR ∈ EL+1 is given by the network output
F(x; θ). We can calculate the gradient of JR with respect to the parameter θi

according to Theorem 3.1, presented below.

Theorem 3.1 For any x ∈ E1, y ∈ EL+1, and i ∈ [L],
∇θi

JR(x, y; θ) = ∇∗
θi
fi(xi) · D∗ωi+1(xi+1) · (ŷR − y), (3.7)

where xi = αi−1(x), JR is defined as in (3.6), αi−1 and ωi+1 are defined as in (3.2)
and (3.3), respectively, and ŷR = F(x; θ).

Proof By the product rule, for any Ui ∈ Hi ,

∇θi
JR(x, y; θ) · Ui = 〈F(x; θ) − y, ∇θi

F (x; θ) · Ui〉
= 〈∇∗

θi
F (x; θ) · (F (x; θ) − y), Ui〉. (3.8)

This implies that the derivative map above is a linear functional, i.e. ∇θi
JR(x, y; θ) ∈

L(Hi;R). Then, by the isomorphism described in [5, Chapter 5, Section 3], we can
represent ∇θi

JR(x, y; θ) as an element of Hi as

∇θi
JR(x, y; θ) = ∇∗

θi
F (x; θ) · (F (x; θ) − y).

Since F(x; θ) = ŷR and ∇∗
θi
F (x; θ) = ∇∗

θi
fi(xi) · D∗ωi+1(xi+1) by (3.5), we have

thus proven (3.7).

Remark 3.1 For an inner product space H , we will use the canonical isomorphism
from [5, Chapter 5, Section 3] throughout this work to express linear functionals
from H to R as elements of H themselves, similarly to how we derived (3.7)
from (3.8) in the above proof.

3.2.2 Classification

For the case of classification, the target variable y is often a one-hot encoding, i.e.
the component of y corresponding to the class of the data point is equal to 1, and the
other components are 0, as described in Remark 2.1. Therefore, we must constrain
the output of the network to be a valid discrete probability distribution. We can
enforce this by applying the softmax function σ to the network output F(x; θ).
Then, we can compare this prediction, ŷC = σ(F (x; θ)) ∈ EL+1, to the target
variable by using the cross-entropy loss function. For a single point (x, y), we can
write the full expression for this loss as given in [3, Equation 3], but with an inner
product instead of a sum:

JC(x, y; θ) = −〈y, (Log ◦ σ) (F (x; θ))〉. (3.9)

We can calculate the gradient of JC with respect to the parameter θi according to
Theorem 3.2.

3.2 Loss Functions and Gradient Descent 27

Theorem 3.2 For any x ∈ E1, y ∈ EL+1, and i ∈ [L],

∇θi
JC(x, y; θ) = ∇∗

θi
fi(xi) · D∗ωi+1(xi+1) · (ŷC − y

)
, (3.10)

where JC is defined as in (3.9) and ŷC = σ(F (x; θ)).

Proof By the chain rule from (2.8), for any Ui ∈ Hi ,

∇θi
JC(x, y; θ) · Ui = −〈y, D (Log ◦ σ) (F (x; θ)) · ∇θi

F (x; θ) · Ui〉
= −〈D∗ (Log ◦ σ) (F (x; θ)) · y, ∇θi

F (x; θ) · Ui〉
= −〈y − 〈1, y〉σ(F (x; θ)), ∇θi

F (x; θ) · Ui〉
= 〈∇∗

θi
F (x; θ) · (σ (F (x; θ)) − y) , Ui〉

= 〈∇∗
θi
fi(xi) · D∗ωi+1(xi+1) · (σ (F (x; θ)) − y) , Ui〉,

where the third line follows from Lemma 2.6 and the fourth line from y being a one-
hot encoding, i.e. 〈1, y〉 = 1. Thus, (3.10) follows from the canonical isomorphism
referenced in Remark 3.1 and by setting ŷC = σ(F (x; θ)).

3.2.3 Backpropagation

Although the two loss functions are quite different, the derivative of each with
respect to a generic parameter θi—(3.7) for regression and (3.10) for classification—
is almost the same, as both apply D∗ωi+1(xi+1) to an error vector. This operation is
commonly referred to as backpropagation, and we will demonstrate how to calculate
it recursively in the next theorem.

Theorem 3.3 (Backpropagation) For all xi ∈ Ei , with ωi defined as in (3.3),

D∗ωi(xi) = D∗fi(xi) · D∗ωi+1(xi+1), (3.11)

where xi+1 = fi(xi), for all i ∈ [L].
Proof Apply the chain rule (2.3) to ωi(xi) = (ωi+1 ◦ fi)(xi), and take the adjoint
to obtain (3.11). This holds for any i ∈ [L] since ωL+1 = id.

Theorem 3.3 presents a concise and generic form for error backpropagation with-
out referencing individual vector components, which current prevailing approaches
explaining backpropagation fail to do. We will see why (3.11) is referred to as
backpropagation in Algorithm 3.2.1, since D∗ωi(xi) will be applied to an error
vector eL ∈ EL+1 and then sent backwards at each layer i.

28 3 Generic Representation of Neural Networks

3.2.4 Gradient Descent Step Algorithm

We present a method for computing one step of gradient descent for a generic
layered neural network in Algorithm 3.2.1, clarifying how the results of this section
can be combined. The inputs are the network input point (x, y) ∈ E1 × EL+1, the
parameter set θ = {θ1, . . . , θL} ∈ H1 × · · · × HL, the learning rate η ∈ R+, and the
type of problem being considered type ∈ {regression, classification}. It updates the
set of network parameters θ via one step of gradient descent.

Let us quickly describe Algorithm 3.2.1. We first generate the network prediction
using forward propagation from lines 2–4 and store the state at each layer. We then
use these states in the backpropagation step, which begins at line 5. At the top layer
(i = L), we initialize the error vector eL to either ŷR − y for regression, or ŷC − y

for classification, since D∗ωL+1(xL+1) = id and

∇θL
J (x, y; θ) = ∇∗

θL
fL(xL) · D∗ωL+1(xL+1) · eL = ∇∗

θL
fL(xL) · eL,

where J is either JR or JC . When i �= L, we update the error vector ei in line 12
through multiplication by D∗fi+1(xi+1) in accordance with (3.11). Then, line 13
uses either ei = D∗ωi+1(xi+1) · (F (x; θ) − y) in the case of regression, or ei =
D∗ωi+1(xi+1) · (σ (F (x; θ)) − y) for classification, to calculate ∇θi

J (x, y; θ) as
per (3.7) or (3.10), respectively. Notice that the difference between classification
and regression simply comes down to changing the error vector initialization.

We can extend Algorithm 3.2.1 linearly to a batch of input points
{(x(j), y(j))}j∈A, where A ⊂ [n], by averaging the contribution to the gradient
from each point (x(j), y(j)) over the batch. We can also extend Algorithm 3.2.1 to
more complex versions of gradient descent, e.g. momentum and adaptive gradient
step methods; these methods are reviewed in [7] but are not in the scope of this
book. We can also incorporate a simple form of regularization into this framework
as described in Remark 3.2.

Remark 3.2 We can easily incorporate a standard
2-regularizing term into this
framework. Consider a new objective function JT (x, y; θ) = J (x, y; θ) + λT (θ),
where λ ∈ R+ is the regularization parameter, J is either JR or JC , and

T (θ) = 1

2
‖θ‖2 = 1

2

L∑

i=1

‖θi‖2 = 1

2

L∑

i=1

〈θi, θi〉

is the regularization term. It follows that ∇θi
JT (x, y; θ) = ∇θi

J (x, y; θ) + λθi ,
since ∇θi

T (θ) = θi by the canonical isomorphism described in Remark 3.1. This
implies that gradient descent can be updated to include the regularizing term, i.e. we
can change line 14 in Algorithm 3.2.1 to

θi ← θi − η
(∇θi

J (x, y; θ) + λθi

)
.

3.3 Higher-Order Loss Function 29

Algorithm 3.2.1 One iteration of gradient descent for a generic neural network
1: function GRADSTEPNN(x, y, θ, η, type)
2: x1 ← x

3: for i ∈ {1, . . . , L} do
4: xi+1 ← fi(xi) � xL+1 = F(x; θ); forward propagation step
5: for i ∈ {L, . . . , 1} do
6: θ̃i ← θi � Store old θi for updating θi−1
7: if i = L and type = regression then
8: eL ← xL+1 − y

9: else if i = L and type = classification then
10: eL ← σ(xL+1) − y

11: else
12: ei ← D∗fi+1(xi+1) · ei+1 � Update with θ̃i+1; backpropagation step
13: ∇θi

J (x, y; θ) ← ∇∗
θi

fi (xi) · ei � J is either JR or JC

14: θi ← θi − η∇θi
J (x, y; θ) � Parameter update step

15: return θ

3.3 Higher-Order Loss Function

We can also consider a higher-order loss function that penalizes the first derivative
of the network output. This was used in [6] to promote invariance of the network to
noisy transformations; it was also used in [8] to promote network invariance, but this
time in the direction of a translation applied to the input data that should not affect its
class (e.g. translating an image of a digit should not alter the digit). We can enforce
this, in the case of regression,1 by adding the term R : E1 ×(H1 × · · · × HL) → R,
defined as

R(x; θ) = 1

2
‖DF(x; θ) · v − β‖2 , (3.12)

to the loss function (3.6), where v ∈ E1 is a tangent vector at the input x, β ∈
EL+1 is the desired tangent vector after transformation, and F(x; θ) is the network
prediction defined in (3.1). We can use (3.12) to impose invariance to infinitesimal
deformation in the direction of v by setting β as the zero vector. In this way, F will
be less likely to alter its prediction along the direction of v.

Adding R to JR creates a new loss function

JH (x, y; θ) = JR(x, y; θ) + μR(x; θ), (3.13)

where μ ∈ R+ determines the amount that the higher-order term R contributes to
the loss function. We can additively extend R to contain multiple terms as

R(x; θ) = 1

2K

K∑

k=1

‖DF(x; θ) · vk − βk‖2 , (3.14)

1Classification will not be explicitly considered in this section but it is not a difficult extension.

30 3 Generic Representation of Neural Networks

where {(vk, βk)}Kk=1 is a finite set of pairs for each data point x independent of the
parameters θ . For any i ∈ [L], we must compute ∇θi

R(x; θ) to perform a gradient
descent step, and we describe how to do this in Theorem 3.4.

Theorem 3.4 For any x, v ∈ E1, β ∈ EL+1, and i ∈ [L],

∇θi
R(x; θ) = (∇θi

DF(x; θ)�v
)∗ · (DF(x; θ) · v − β) , (3.15)

with R defined as in (3.12).

Proof For any Ui ∈ Hi ,

∇θi
R(x; θ) · Ui = 〈DF(x; θ) · v − β, ∇θi

DF(x; θ) · (Ui, v)〉
= 〈DF(x; θ) · v − β,

(∇θi
DF(x; θ)�v

) · Ui〉
= 〈(∇θi

DF(x; θ)�v
)∗ · (DF(x; θ) · v − β) ,Ui〉.

Thus, (3.15) follows from the canonical isomorphism as employed in Theorem 3.1.

We need to present some preliminary results before actually computing (3.15).
In particular, we will show how we can use our previous results to compute(∇θi

DF(x; θ)�v
)∗.

Lemma 3.2 For any x ∈ E1 and i ∈ [L],

Dαi(x) = Dfi(xi) · Dαi−1(x),

where αi is defined in (3.2) and xi = αi−1(x).

Proof This is proven using the chain rule (2.3), since αi = fi ◦ αi−1 for all i ∈ [L].
Note that DαL = DF since αL = F , which means that we require Lemma 3.2 to

calculate DF(x; θ) · v. Lemma 3.2 compactly defines forward propagation through
the tangent network in the spirit of [8]. Unsurprisingly, forward propagation through
the tangent network is simply the derivative of forward propagation through the base
network. This will be a recurring theme throughout this section: new results for the
higher-order loss will emerge as derivatives of results from the previous section.
Tangent backpropagation shares this property and we will see why this is true in the
next theorem.

Theorem 3.5 (Tangent Backpropagation) For any x, v ∈ E1,

((Dαi−1(x) · v)�D2ωi(xi)
)∗

= D∗fi(xi) ·
(
(Dαi(x) · v)�D2ωi+1(xi+1)

)∗
(3.16)

+
(
(Dαi−1(x) · v)�D2fi(xi)

)∗ · D∗ωi+1(xi+1),

3.3 Higher-Order Loss Function 31

where αi is defined in (3.2), ωi is defined in (3.3), and i ∈ [L]. Also,
(
(DαL(x) · v)�D2ωL+1(xL+1)

)∗ = 0. (3.17)

Proof First of all, by Lemma 2.2, we know that for any e ∈ EL+1,

D
(
D∗ωi(αi−1(x)) · e

) · v =
(
(Dαi−1(x) · v)�D2ωi(αi−1(x))

)∗ · e, (3.18)

which is the left-hand side of (3.16) applied to a vector e. Now, recall the generic
backpropagation rule from Theorem 3.3, i.e.

D∗ωi(αi−1(x)) = D∗fi(αi−1(x)) · D∗ωi+1(αi(x)), (3.19)

where we have explicitly written αi(x) in place of xi+1. Then, if we apply the right-
hand side of (3.19) to a generic vector e and take its derivative in the direction of v,
we obtain

D
(
D∗fi(αi−1(x)) · D∗ωi+1(αi(x)) · e

) · v

=
(
(Dαi−1(x) · v)�D2fi(αi−1(x))

)∗ · D∗ωi+1(αi(x)) · e (3.20)

+ D∗fi(αi−1(x)) ·
(
(Dαi(x) · v)�D2ωi+1(αi(x))

)∗ · e,

where we rely on the product rule and the results from Lemma 2.2 again. Then,
since the left-hand sides of (3.18) and (3.20) are equal by (3.19), their right-hand
sides must also be equal. This shows that (3.16) holds upon making the substitution
that xi = αi−1(x) and xi+1 = αi(x).

Also, (3.17) holds since ωL+1 is the identity, implying that its second derivative
map (and thus also the adjoint) is the zero map.

We can use Theorem 3.5 to backpropagate the tangent error DF(x; θ) · v − β

throughout the network at each layer i analogously to how we can use Theorem 3.3
to backpropagate the error vector ŷR − y at each layer i.2 Since we now understand
the forward and backward propagation of tangent vectors, we can finally compute(∇θi

DF(x; θ)�v
)∗ for any v ∈ E1 and i ∈ [L]; this is the main result of this section

and we present it in Theorem 3.6.

Theorem 3.6 For any x, v ∈ E1 and i ∈ [L],
(∇θi

DF(x; θ)�v
)∗ = ∇∗

θi
fi(xi) ·

(
(Dαi(x) · v)�D2ωi+1(xi+1)

)∗
(3.21)

+ ((Dαi−1(x) · v)�D∇θi
fi(xi)

)∗ · D∗ωi+1(xi+1),

where F is defined in (3.1), αi is defined in (3.2), and ωi is defined in (3.3).

2ŷC − y in the case of classification.

32 3 Generic Representation of Neural Networks

Proof We will prove this in a similar manner to the proof of Theorem 3.5. Referring
to Lemma 2.4, we can see that for any e ∈ EL+1,

D
(∇∗

θi
F (x; θ) · e

) · v = (∇θi
DF(x; θ)�v

)∗ · e. (3.22)

Furthermore, from Lemma 3.1, we know that

∇∗
θi
F (x; θ) · e = ∇θ∗

i
fi(αi−1(x)) · D∗ωi+1(αi(x)) · e (3.23)

for any vector e ∈ EL+1. Then, if we take the derivative of (3.23) in the direction of
v, we obtain

D
(∇∗

θi
F (x; θ) · e

) · v = D
(∇∗

θi
fi(αi−1(x)) · D∗ωi+1(αi(x)) · e

) · v (3.24)

= ((Dαi−1(x) · v)�D∇θi
fi(αi−1(x))

)∗ · D∗ωi+1(αi(x)) · e

+ ∇∗
θi
fi(αi−1(x)) ·

(
(Dαi(x) · v)�D2ωi+1(αi(x))

)∗ · e,

where we rely on the product rule and Lemma 2.4. Then, as in the proof of
Theorem 3.5, since the left-hand sides of (3.22) and (3.24) are equal by (3.23),
their right-hand sides must also be equal. This shows that (3.21) holds upon making
the substitutions xi = αi−1(x) and xi+1 = αi(x).

3.3.1 Gradient Descent Step Algorithm

Algorithm 3.3.1 describes how to perform one step of gradient descent for the
higher-order loss function JH . The inputs to the algorithm are a superset of those for
Algorithm 3.2.1, with the new inputs as follows: the input tangent vector v ∈ E1, the
desired tangent vector β ∈ EL+1, and the weight of the higher-order term μ ∈ R+.
The output is again an updated set of weights θ .

The algorithm proceeds by performing both types of forward propagation—
standard forward propagation and tangent forward propagation—from lines 4–6.
Then, three variants of backpropagation at each layer i are used to calculate the
required derivatives:

• The high-order tangent error

et
i =

(
(Dαi(x) · v)�D2ωi+1(xi+1)

)∗ · (DF(x; θ) · v − β) ,

calculated via (3.16) and used in (3.21)
• The low-order tangent error ev

i = D∗ωi+1(xi+1) · (DF(x; θ) · v − β), calculated
via (3.11) and used in both (3.16) and (3.21)

• The normal backpropagation error e
y
i = D∗ωi+1(xi+1) · (F (x; θ) − y), calcu-

lated via (3.11) and used in (3.5)

3.4 Conclusion 33

Algorithm 3.3.1 One iteration of gradient descent for a higher-order loss function
1: function GRADDESCHIGHORDERNN(x, y, v, β, θ, η, μ)
2: x1 ← x

3: v1 ← v � vi = Dαi−1(x) · v and Dα0(x) = id
4: for i ∈ {1, . . . , L} do � xL+1 = F(x; θ) and vL+1 = DF(x; θ) · v

5: xi+1 ← fi(xi)

6: vi+1 ← Dfi(xi) · vi � Lemma 3.2
7: for i ∈ {L, . . . , 1} do
8: θ̃i ← θi � Store θi for updating θi−1
9: if i = L then � Initialization of ei ’s

10: et
L ← 0

11: ev
L ← vL+1 − β

12: e
y
L ← xL+1 − y

13: else � Calculate D∗fi+1(xi+1) with θ̃i+1
14: et

i ← D∗fi+1(xi+1) · et
i+1 + (vi+1�D2fi+1(xi+1)

)∗ · ev
i+1 � High-Order Tangent

15: ev
i ← D∗fi+1(xi+1) · ev

i+1 � Low-Order Tangent
16: e

y
i ← D∗fi+1(xi+1) · e

y

i+1 � Standard backpropagation

17: ∇θi
JR(x, y; θ) ← ∇∗

θi
fi (xi) · e

y
i

18: ∇θi
R(x; θ) ← ∇∗

θi
fi (xi) · et

i + (vi�D∇θi
fi (xi)

)∗ · ev
i � (3.21)

19: θi ← θi − η(∇θi
JR(x, y; θ) + μ∇θi

R(x; θ)) � Parameter update step

20: return θ

We calculate each of these three quantities recursively from i = L to i = 1. At level
i = L, we initialize the high-order tangent error to the zero vector because of (3.17),
the low-order tangent error to DF(x; θ) · v − β because D∗ωL+1(xL+1) = id, and
the normal backpropagation error to F(x; θ)−y (as in Algorithm 3.2.1’s regression
case—there it is just ei) again because D∗ωL+1(xL+1) = id. We can then use the
three backpropagated quantities to calculate ∇θi

JR(x, y; θ) and ∇θi
R(x; θ), which

eventually allows us to compute ∇θi
JH (x, y; θ) = ∇θi

JR(x, y; θ) + μ∇θi
R(x; θ)

for each i and update the weights.
The extensions of Algorithm 3.2.1 to a batch of input points, more complicated

gradient descent methods, and
2 regularization also apply here. Furthermore, we
can linearly extend this algorithm to calculate the derivatives for R defined with
multiple terms as in (3.14).

3.4 Conclusion

In this chapter, we have developed a generic mathematical framework for layered
neural networks. We have calculated derivatives with respect to the parameters of
each layer for standard loss functions, demonstrating how to do this directly over
the vector space in which the parameters are defined. We have also done this with a
higher-order loss function which shows the flexibility of the developed framework.
We will use this generic framework to represent specific network structures in the
next chapter.

34 3 Generic Representation of Neural Networks

References

1. A.L. Caterini, D.E. Chang, A novel representation of neural networks. arXiv:1610.01549 (2016,
preprint)

2. K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (2016), pp. 770–778

3. G. Hinton, L. Deng, D. Yu, G. Dahl, A. Mohamed, N. Jaitly, A. Senior, V. Vanhoucke, P. Nguyen,
T. Sainath, B. Kingsbury, Deep neural networks for acoustic modeling in speech recognition: the
shared views of four research groups. IEEE Signal Process. Mag. 29(6), 82–97 (2012)

4. A. Krogh, J.A. Hertz, A simple weight decay can improve generalization, in NIPS, vol. 4 (1991),
pp. 950–957

5. E. Nering, Linear Algebra and Matrix Theory (Wiley, Hoboken, 1970)
6. S. Rifai, P. Vincent, X. Muller, X. Glorot, Y. Bengio, Contractive auto-encoders: explicit

invariance during feature extraction, in Proceedings of the 28th International Conference on
Machine Learning (ICML-11) (2011), pp. 833–840

7. S. Ruder, An overview of gradient descent optimization algorithms. arXiv:1609.04747 (2016,
preprint)

8. P. Simard, B. Victorri, Y. LeCun, J. Denker, Tangent Prop — a formalism for specifying selected
invariances in an adaptive network, in Advances in Neural Information Processing Systems
(1992), pp. 895–903

Chapter 4
Specific Network Descriptions

We developed a mathematical framework for a generic layered neural network in
the preceding chapter, including a method to express error backpropagation and
loss function derivatives directly over the inner product space in which the network
parameters are defined. We will dedicate this chapter to expressing three common
neural network structures within this framework: the Multilayer Perceptron (MLP),
Convolutional Neural Network (CNN), and Deep Autoencoder (DAE). To do this
we must first, for each layer i ∈ [L], define the input and parameter spaces—
Ei and Hi in the context of the previous chapter—and the layerwise function
fi : Ei × Hi → Ei+1. We will then calculate D∗fi and ∇∗

θi
fi , for each layer i and

each of the parameters θi , and insert these results into Theorems 3.1, 3.2 and 3.3
in order to generate an algorithm for a single step of gradient descent similar to
Algorithm 3.2.1.

The exact layout of this chapter is as follows. We will first explore the simple case
of the MLP, deriving the canonical vector-valued form of backpropagation along the
way. Then, we shift our attention to the CNN. Here, the layerwise function is more
complicated, as our inputs and parameters are in tensor product spaces; thus, we
require more complex operations to combine the inputs and the parameters at each
layer. That being said, CNNs still fit squarely in the framework of Sect. 3.1. The final
network that we consider in this chapter, the DAE, does not fit as easily into that
framework, as the parameters at any given layer have a deterministic relationship
with the parameters at exactly one other layer. This violates the assumption of
parametric independence between layers. We will be able to overcome this issue,
however, with a small adjustment to the framework.

© The Author(s) 2018
A. L. Caterini, D. E. Chang, Deep Neural Networks in a Mathematical Framework,
SpringerBriefs in Computer Science, https://doi.org/10.1007/978-3-319-75304-1_4

35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75304-1_4&domain=pdf
https://doi.org/10.1007/978-3-319-75304-1_4

36 4 Specific Network Descriptions

4.1 Multilayer Perceptron

The first specific network that we will formulate is the standard MLP, comprised
of multiple layers of Rosenblatt’s perceptron [6]. These are layered models in
which we generate each component1 of the input to the current layer by taking a
weighted sum of the outputs of the previous layer and then applying an elementwise
nonlinearity. We will review the standard result expressing the layerwise function
using matrix multiplication, and we will also demonstrate how to use the framework
from the previous chapter to calculate the gradient directly over the space of
matrices in which the parameters are defined. We will also recover the forward
and backpropagation algorithms described in [3, Algorithms 6.3 and 6.4], combined
together here in Algorithm 4.1.1, but we will have arrived at them from the generic
algebraic formulation in Sect. 3.1.

4.1.1 Formulation

We will begin with specifying the spaces in which we will be working at each layer
of the neural network. Suppose we choose our network to have L layers, and our
input x and known response y are of dimension n1 and nL+1, respectively. Then,
if we choose each of the other layers to take in inputs of size ni, 2 ≤ i ≤ L, the
spaces Ei as described in Sect. 3.1 can each be given by R

ni for all i ∈ [L + 1].
The parameters at each layer i are the weight matrix Wi ∈ R

ni+1×ni and the bias
vector bi ∈ R

ni+1 . We thus have that Hi from Sect. 3.1 is given by R
ni+1×ni ×R

ni+1

for every i ∈ [L]. We will equip each Ei and Hi with the standard Euclidean inner
product 〈A, B〉 = tr

(
ABT

) = tr
(
AT B

)
.

Recall the generic layerwise function fi : Ei × Hi → Ei+1. In the MLP, we can
explicitly write fi : Rni × (Rni+1×ni × R

ni+1) → R
ni+1 as

fi(xi;Wi, bi) = Ψi(Wi · xi + bi) (4.1)

for any xi ∈ R
ni ,Wi ∈ R

ni+1×ni , and bi ∈ R
ni+1 , where Ψi : R

ni+1 → R
ni+1

is an elementwise function with elementwise operation ψi : R → R and ·
denotes matrix-vector multiplication. We often suppress the dependence of fi on
the parameters, as before, by writing

fi(xi) ≡ fi(xi;Wi, bi)

to clarify the meaning of the composition of several layerwise functions. We will
define the output of the neural network, F(x; θ) ∈ R

nL+1 , as in (3.1), substituting the

1Also known as a neuron in keeping with the brain analogy.

4.1 Multilayer Perceptron 37

Table 4.1 Common
elementwise nonlinearities,
along with their first
derivatives

Name Definition First derivative

tanh ψi(x) ≡ sinh(x)
cosh(x)

ψ ′
i (x) = 4 cosh2(x)

(cosh(2x)+1)2

Sigmoid ψi(x) ≡ 1
1+exp(−x)

ψ ′
i (x) = ψi(x) (1 − ψi(x))

ReLU ψi(x) ≡ max(0, x) ψ ′
i (x) = H(x)

specific form of fi defined in (4.1) at each layer. We will also retain the definitions
of αi : Rn1 → R

ni+1 and ωi : Rni → R
nL+1 as in (3.2) and (3.3), respectively.

Remark 4.1 The map Ψi depends on the choice of elementwise operation ψi . We
present the most popular basic choices and their derivatives in Table 4.1. Note that
H is the Heaviside step function, and sinh and cosh are the hyperbolic sine and
cosine functions, respectively. Table 4.1 is not a complete description of all possible
nonlinearities.

4.1.2 Single-Layer Derivatives

To apply the gradient descent framework derived in Sect. 3.2 to either of the standard
loss functions in the context of MLPs, we only need to calculate D∗fi , ∇∗

Wi
fi , and

∇∗
bi

fi , for all i ∈ [L], where fi is given by (4.1). We will see how to do this
in Lemmas 4.1 and 4.2: the former containing the derivative maps, and the latter
containing their adjoints.

Lemma 4.1 For any xi ∈ R
ni and Ui ∈ R

ni+1×ni ,

∇Wi
fi(xi) · Ui = DΨi(zi) · Ui · xi, (4.2)

∇bi
fi(xi) = DΨi(zi), (4.3)

where zi = Wi · xi + bi , fi is defined in (4.1), and i ∈ [L]. Furthermore,

Dfi(xi) = DΨi(zi) · Wi. (4.4)

Proof Equations (4.2) and (4.3) are both consequences of the chain rule in (2.8),
while Eq. (4.4) is a consequence of the chain rule in (2.3).

Lemma 4.2 For any xi ∈ R
ni and u ∈ R

ni+1 ,

∇∗
Wi

fi(xi) · u = (Ψ ′
i (zi) � u

)
xT
i , (4.5)

∇∗
bi

fi(xi) = DΨi(zi), (4.6)

where zi = Wi · xi + bi , fi is defined as in (4.1), and i ∈ [L]. Furthermore,

D∗fi(xi) = WT
i · DΨi(zi). (4.7)

38 4 Specific Network Descriptions

Proof By (4.2), for any u ∈ R
ni+1 and Ui ∈ R

ni+1×ni ,

〈u, ∇Wi
fi(xi) · Ui〉 = 〈z, DΨi(zi) · Ui · xi〉

= 〈DΨi(zi) · u, Ui · xi〉
= 〈(DΨi(zi) · u) xT

i , Ui〉,

where the third equality arises from the cyclic property of the trace. Since this is
true for all Ui ∈ R

ni+1×ni ,

∇∗
Wi

fi(xi) · u = (DΨi(zi) · u) xT
i = (Ψ ′

i (zi) � u
)
xT
i ,

which proves (4.5). We can easily derive (4.6) from (4.3) by taking the adjoint
and using the fact that DΨi(zi) is self-adjoint (Proposition 2.1). Finally, we can
derive (4.7) from (4.4) by taking the adjoint, using the self-adjointness of DΨi(zi),
and noting that the adjoint of multiplication by a matrix W is simply multiplication
by its transpose under the standard inner product.

Note that in (4.5), we are multiplying a column vector in R
ni+1 on the left with

a row vector in R
ni on the right, which results in a matrix in R

ni+1×ni —exactly the
same space in which Wi resides. We will also encounter this in (4.9) in the next
section.

4.1.3 Loss Functions and Gradient Descent

In this section, we will see how to insert the results from the previous sections
into the generic results given in Theorems 3.1, 3.2 and 3.3. This will allow us to
recover a gradient descent algorithm for MLPs from the generic algorithm given in
Algorithm 3.2.1. To this end, we will first describe error backpropagation for MLPs
in Theorem 4.1, and then compute the full loss function derivatives afterwards. Note
that throughout this chapter we assume, for classification, that 〈1, y〉 = 1 for all
y ∈ EL+1, as in Remark 2.1.

Theorem 4.1 (Backpropagation in MLP) For fi defined as in (4.1), ωi from (3.3),
and any e ∈ R

nL+1 ,

D∗ωi(xi) · e = WT
i · [Ψ ′

i (zi) � (D∗ωi+1(xi+1) · e)
]
, (4.8)

where xi+1 = fi(xi) and zi = Wi · xi + bi , for all i ∈ [L].
Proof By Theorem 3.3 and (4.7), for any i ∈ [L],

D∗ωi(xi) · e = D∗fi(xi) · D∗ωi+1(xi+1) · e = WT
i · DΨi(zi) · D∗ωi+1(xi+1) · e.

Once we evaluate DΨi(zi) as in Proposition 2.1, the proof is complete.

4.1 Multilayer Perceptron 39

Theorem 4.2 (Loss Function Gradients in MLP) Let J be either JR , as
defined in (3.6), or JC , as defined in (3.9). Let (x, y) ∈ E1 × EL+1 be
a network input-response pair, and the parameters be represented by θ =
{W1, . . . ,WL, b1, . . . , bL}. Then, the following equations hold for any i ∈ [L]:

∇Wi
J (x, y; θ) = [Ψ ′

i (zi) � (D∗ωi+1(xi+1) · e
)]

xT
i , (4.9)

∇bi
J (x, y; θ) = Ψ ′

i (zi) � (D∗ωi+1(xi+1) · e
)
, (4.10)

where xi = αi−1(x), zi = Wi · xi + bi , and the prediction error is

e =
{

F(x; θ) − y, for regression,

σ (F (x; θ)) − y, for classification,
(4.11)

for F defined in (3.1) and σ defined in (2.15).

Proof By Theorems 3.1 and 3.2, for all i ∈ [L] and θ ∈ {Wi, bi},

∇θi
J (x, y; θ) = ∇∗

θi
fi(xi) · D∗ωi+1(xi+1) · e,

where e is defined as in (4.11) and J is either JR or JC . Then, we can substitute
either Wi or bi for θi within ∇∗

θi
fi(xi) and evaluate it according to Lemma 4.2:

∇Wi
J (x, y; θ)=∇∗

Wi
fi(xi) · D∗ωi+1(xi+1) · e= [Ψ ′

i (zi) � (D∗ωi+1(xi+1) · e
)]

xT
i ,

∇bi
J (x, y; θ)=∇∗

bi
fi(xi) · D∗ωi+1(xi+1) · e=DΨi(zi) · D∗ωi+1(xi+1) · e.

We can now complete the proof by evaluating DΨi(zi) in the second equation
according to Proposition 2.1.

We now have all of the ingredients to build an algorithm for one step of gradient
descent in an MLP, and we will do this by inserting the specific definitions of
fi , D∗fi and ∇∗

θi
fi into Algorithm 3.2.1 at each layer i ∈ [L], where θi is Wi

or bi . We present this method in Algorithm 4.1.1. The inputs are the network
input (x, y) ∈ R

n1 × R
nL+1 , the parameter set θ ≡ {W1, . . . ,WL, b1, . . . bL},

the learning rate η ∈ R+, and the type of problem being considered type ∈
{regression, classification}. We receive an updated parameter set upon completion of
the algorithm. The extensions of Algorithm 3.2.1 to a batch of points, more complex
versions of gradient descent, and regularization all apply here as well. We can also
extend this algorithm to a higher-order loss function by calculating the second
derivatives of fi and inserting these into Algorithm 3.3.1 as in [2, Section 4.2],
although we do not explicitly cover that in this book.

40 4 Specific Network Descriptions

Algorithm 4.1.1 One iteration of gradient descent for an MLP
1: function GRADDESCMLP(x, y, θ, type, η)
2: x1 ← x

3: for i ∈ {1, . . . , L} do � xL+1 = F(x; θ)

4: zi ← Wi · xi + bi

5: xi+1 ← Ψi(zi) � Inserted specific definition of fi

6: for i ∈ {L, . . . , 1} do
7: W̃i ← Wi � Store old Wi for updating Wi−1
8: if i = L and type = regression then
9: eL ← xL+1 − y

10: else if i = L and type = classification then
11: eL ← σ(xL+1) − y

12: else
13: ei ← W̃T

i+1 · (Ψ ′
i+1(zi+1) � ei+1) � (4.8); MLP backpropagation

14: ∇bi
J (x, y; θ) ← Ψ ′

i (zi) � ei � (4.10); specific definition of ∇∗
bi

fi (xi)

15: ∇Wi
J (x, y; θ) ← (

Ψ ′
i (zi) � ei

)
xT
i � (4.9); specific definition of ∇∗

Wi
fi(xi)

16: bi ← bi − η∇bi
J (x, y; θ) � Parameter update steps

17: Wi ← Wi − η∇Wi
J (x, y; θ)

18: return θ

4.2 Convolutional Neural Networks

We will now investigate how to apply the generic neural network formulation from
Sect. 3.1 to a Convolutional Neural Network (CNN), which is more complicated
than the MLP. The mathematical difficulties arise from handling multi-channeled
inputs and preserving the spatial dependence within matrices. However, once we
can specify fi to determine the related quantities D∗fi and ∇∗

θi
fi , we can extend

Algorithm 3.2.1 to the CNN case as we did for MLPs in the previous section.
To achieve this goal, we will specify the space of inputs and parameters, describe
how to express the actions of the multi-channeled convolution, and then calculate
derivatives and adjoints of each of these operations. This section is quite similar
to our work from [1], but we have made additional refinements to emphasize the
similarity to Sect. 3.1. As far as we know, this is the only fully algebraic description
of the CNN in the literature describing both the convolution and pooling operations.

4.2.1 Single Layer Formulation

We will structure this section differently than Sect. 4.1.1. Instead of introducing the
spaces first and then describing the layerwise function at each layer, we will operate
in reverse order by describing the layerwise function first. One reason for this is that
we will encounter intermediate spaces at each layer in the CNN, as opposed to the
MLP, which can make the notation complicated if we also explicitly consider the
layer number i in each computation.

4.2 Convolutional Neural Networks 41

We can describe the actions of a generic layer of a CNN as a parameter-dependent
map that takes as input an m1-channeled tensor, where each channel is a matrix of
size n1 ×
1, and outputs an m2-channeled tensor, where each channel is a matrix
of size n2 ×
2. The parameters that we must learn through gradient descent are a
set of m2 filters, each of size p × q.2 To represent the input, we will use a point
x ∈ R

n1×
1 ⊗R
m1 , and we will represent the parameters as W ∈ R

p×q ⊗R
m2 . Note

that, in application, it is almost always the case that p << n1 and q <<
1—the
filters are much smaller than the inputs. If we use {ej }m1

j=1 to denote an orthonormal

basis for Rm1 , and {ej }m2
j=1 to denote an orthonormal basis for Rm2 , we can write x

and W as follows:

x =
m1∑

j=1

xj ⊗ ej , W =
m2∑

j=1

Wj ⊗ ej ,

where we refer to each xj ∈ R
n1×
1 as a feature map, and each Wj ∈ R

p×q as
a filter used in convolution. Then, we can write the generic layerwise function as
f : (Rn1×
1 ⊗ R

m1
)× (Rp×q ⊗ R

m2
)→ R

n2×
2 ⊗ R
m2 , i.e.

f (x;W) ∈ R
n2×
2 ⊗ R

m2

for all x and W as described above. We will specify the particular form of f in
this section; it begins with specifying the convolution, which relies on a cropping
operator, applying an elementwise nonlinearity to the output of the convolution, and
then applying max-pooling to that.

Note that, throughout this section, we will use {Ej,k}n1,
1
j,k=1 to denote an orthonor-

mal basis for Rn1×
1 , {Ẽj,k}p,q

j,k=1 denote an orthonormal basis for Rp×q , {Ej,k}n2,
2
j,k=1

to denote an orthonormal basis for Rn2×
2 , and {Êj,k }̂n1,
̂1
j,k=1 to denote an orthonormal

basis for the (intermediate, and as of yet undefined) space R
n̂1×
̂1 .

Cropping and Embedding Operators

We need to develop notation for cropping grid-based inputs before we are able
to express the actions of convolution. We will thus introduce a linear cropping
operation in this section. We will also derive its adjoint, which is given by an
embedding operation, and is necessary for calculating ∇∗f and D∗f .

2We will omit the use of a bias vector b in this formulation because it is a simple extension of what
we will develop here and will lighten the notation. Refer to [1] to see how we can handle the bias
vector.

42 4 Specific Network Descriptions

We can define the cropping operator at index (k, l),Kk,l ∈ L(Rn1×
1 ⊗
R

m1;Rp×q), as

Kk,l

⎛

⎝
m1∑

j=1

xj ⊗ ej

⎞

⎠ ≡
m1∑

j=1

κk,l(xj) (4.12)

where we define κk,l ∈ L(Rn1×
1;Rp×q) as

κk,l(xj) ≡
p∑

s=1

q∑

t=1

〈xj , Ek+s−1,l+t−1〉Ẽs,t (4.13)

for any k ∈ [n1 − p + 1] and l ∈ [
1 − q + 1]. When {Ej,k}j,k and {Ẽs,t }s,t are
standard bases of their respective spaces, κk,l(xj) is the p × q submatrix of xj ,
containing the (k, l) to (k + p − 1, l + q − 1) elements of xj , inclusive.

To find the adjoint of (4.12), we will first define the embedding operator at the
index (k, l), Emk,l ∈ L(Rp×q;Rn1×
1), as

Emk,l(y) ≡
p∑

s=1

q∑

t=1

〈y, Ẽs,t 〉Ek+s−1,l+t−1 (4.14)

for any y ∈ R
p×q , k ∈ [n1 − p + 1], and l ∈ [
1 − q + 1], which corresponds to

embedding y into the zero matrix when {Ej,k}j,k is the standard basis. We will see
how the adjoint of K relies on Em in Lemma 4.3.

Lemma 4.3 For any y ∈ R
p×q ,

K∗
k,l(y) =

m1∑

j=1

Emk,l(y) ⊗ ej ,

where Kk,l is defined as in (4.12), Emk,l is defined as in (4.14), k ∈ [n1 − p + 1],
and l ∈ [
1 − q + 1].
Proof For any z ∈ R

n1×
1 ,

〈y, κk,l(z)〉 =
〈
y,

p∑

s=1

q∑

t=1

〈z, Ek+s−1,l+t−1〉Ẽs,t

〉

=
〈

p∑

s=1

q∑

t=1

〈y, Ẽs,t 〉Ek+s−1,l+t−1, z

〉

= 〈Emk,l(y), z〉,

which proves that κ∗
k,l(y) = Emk,l(y) for all y ∈ R

p×q .

4.2 Convolutional Neural Networks 43

Now, let x =∑m1
j=1 xj ⊗ ej ∈ R

n1×
1 ⊗ R
m1 . Then,

〈z, Kk,l(x)〉 =
m1∑

j=1

〈z, κk,l(xj)〉

=
m1∑

j=1

〈κ∗
k,l(z), xj 〉

=
m1∑

j=1

〈Emk,l(z), xj 〉

=
〈

m1∑

j=1

Emk,l(z) ⊗ ej , x

〉
,

where the last equation follows from (2.1). Thus we have completed the proof.

Convolution Operator

We will now use the cropping operator K to define the action of convolution.
The convolution operator, which we will denote by C, is a bilinear map which
convolves3 the filters with the feature maps. More formally, we can write the
convolution operator C ∈ L(Rp×q ⊗ R

m2 ,Rn1×
1 ⊗ R
m1;Rn̂1×
̂1 ⊗ R

m2) as

C(W, x) =
m2∑

j=1

cj (W, x) ⊗ ej , (4.15)

where cj ∈ L(Rp×q⊗R
m2 ,Rn1×
1 ⊗R

m1;Rn̂1×
̂1) is a bilinear operator that defines
the mechanics of the convolution. We can explicitly write out cj for all j ∈ [m2] by
using the cropping operator:

cj (W, x) =
n̂1∑

k=1

̂1∑

l=1

〈
Wj,Kγ (k,l,Δ)(x)

〉
Êk,l , (4.16)

where W =∑m2
j=1 Wj ⊗ ej ,

γ (k, l,Δ) = (1 + (k − 1)Δ, 1 + (l − 1)Δ), (4.17)

3Actually, in the neural network community, we use cross-correlation instead of convolution,
although the difference is minor and we almost never mention cross-correlation; refer to [5] for
more on the difference between the two.

44 4 Specific Network Descriptions

is shorthand for the indices of the cropping operator, and Δ ∈ Z+ defines the stride
of the convolution.4

Notice that cj (W, x) produces a new feature map for each j ∈ [m2] after the
convolution step, which means that we can view C(W, x) as a stack of m2 feature
maps, or an m2-channeled tensor. Using (4.16) we can describe the convolution
operator in the following way: first crop the input feature maps, convolve the
cropped maps with the filter Wj , and then sum up the contributions to the feature
map for each k ∈ [̂n1] and l ∈ [
̂1].

The next two theorems give us the adjoints of the operators (C �x), (W�C), and
(W� cj), which are all necessary for gradient calculations.

Theorem 4.3 Let y = ∑m2
j=1 yj ⊗ ej ∈ R

n̂1×
̂1 ⊗ R
m2 and x ∈ R

n1×
1 ⊗ R
m1 .

Then,

(C �x)∗ · y =
m2∑

j=1

⎧
⎨

⎩

n̂1∑

k=1

̂1∑

l=1

〈yj , Êk,l〉Kγ (k,l,Δ)(x)

⎫
⎬

⎭⊗ ej ,

where C is defined as in (4.15), γ (k, l,Δ) is defined as in (4.17), and Kγ (k,l,Δ) is
defined as in (4.12).

Proof Let U =∑m2
j=1 Uj ⊗ ej ∈ R

p×q ⊗ R
m2 . Then,

〈y, (C �x) · U 〉 = 〈y, C(U, x)〉

=
m2∑

j=1

〈yj , cj (U, x)〉

=
m2∑

j=1

〈
yj ,

n̂1∑

k=1

̂1∑

l=1

〈Uj , Kγ (k,l,Δ)(x)〉Êk,l

〉

=
m2∑

j=1

n̂1∑

k=1

̂1∑

l=1

〈yj , Êk,l〉〈Kγ (k,l,Δ)(x), Uj 〉

=
m2∑

j=1

〈
n̂1∑

k=1

̂1∑

l=1

〈yj , Êk,l〉Kγ (k,l,Δ)(x), Uj

〉
.

Then, by Eq. (2.1), the proof is complete since this is true for any U ∈ R
p×q ⊗R

m2 .

4Here, we have assumed that both n1 and
1 are divisible by Δ; in particular, n1 = Δn̂1 and

1 = Δ
̂1. If this is not the case, however, we can increase n1 or
1 to be divisible by Δ via
boundary conditions on the input matrices; refer to [5] for more on image padding or boundary
conditions.

4.2 Convolutional Neural Networks 45

Theorem 4.4 Let W = ∑m2
j=1 Wj ⊗ ej ∈ R

p×q ⊗ R
m2 . Then, for any y ∈ R

n̂1×
̂1

and j ∈ [m2],

(W� cj)
∗ · y =

n̂1∑

k=1

̂1∑

l=1

〈y, Êk,l〉K∗
γ (k,l,Δ)(Wj),

where cj is defined as in (4.16), γ (k, l,Δ) is defined as in (4.17), and Kγ (k,l,Δ) is

defined as in (4.12). Furthermore, for any z =∑m2
j=1 zj ⊗ ej ∈ R

n̂1×
̂1 ⊗ R
m2 ,

(W�C)∗ · z =
m2∑

j=1

(W� cj)
∗ · zj ,

where C is defined as in (4.15).

Proof Let x ∈ R
n1×
1 ⊗ R

m1 . Then,

〈y, (W� cj) · x〉 = 〈y, cj (W, x)〉

=
n̂1∑

k=1

̂1∑

l=1

〈Wj, Kγ (k,l,Δ)(x)〉〈y, Êk,l〉

=
n̂1∑

k=1

̂1∑

l=1

〈
〈y, Êk,l〉K∗

γ (k,l,Δ)(Wj), x
〉
,

which proves the first equation. Also,

〈z, (W�C) · x〉 = 〈z, C(W, x)〉

=
m2∑

j=1

〈zj , cj (W, x)〉

=
m2∑

j=1

〈(W� cj)
∗ · zj , x〉

=
〈

m2∑

j=1

(W� cj)
∗ · zj , x

〉
.

Both of the above results are true for any x ∈ R
n1×
1 ⊗ R

m1 , which completes the
proof.

46 4 Specific Network Descriptions

Max-Pooling Operator

The final piece of the layerwise function in a CNN is a pooling operation. In this
book, we will describe the popular max-pooling operation; refer to [1] for a similar
discussion on average pooling. Max-pooling is a nonlinear operation that outputs
the maximum element in every disjoint r × r region in each feature map for some
r ∈ Z+. The effect of the max-pooling operation is to down-sample the feature maps
to a smaller size. We can describe max-pooling using the map Φ : Rn̂1×
̂1 ⊗R

m2 →
R

n2×
2 ⊗ R
m2 , for any y =∑m2

j=1 yj ⊗ ej , according to

Φ(y) ≡
m2∑

j=1

φ(yj) ⊗ ej , (4.18)

where we define φ : Rn̂1×
̂1 → R
n2×
2 as

φ(yj) ≡
n2∑

k=1

2∑

l=1

max(κγ (k,l,r)(yj))Ek,l (4.19)

for all yj ∈ R
n̂1×
̂1 . Here, we have modified the map κ to take inputs in R

n̂1×
̂1

and produce a result in R
r×r , i.e. κγ (k,l,r) ∈ L(Rn̂1×
̂1;Rr×r) for all k ∈ [n2] and

l ∈ [
2] in (4.19).5 The max in (4.19) calculates the max over an r × r region and
outputs a single number, which we can express as follows: for any z ∈ R

r×r , with a
minor abuse of notation,

max(z) ≡ max
(k,l)∈[r]×[r]

〈z, Ĕk,l〉, (4.20)

where {Ĕk,l}r,rk,l=1 is an orthonormal basis for Rr×r .

Notice how we have defined Φ and φ in the same format as K and κ6: Φ operates
over the tensor product space, and φ over matrices.

We will need to differentiate (4.19) and take its adjoint to compute the gradient
descent algorithm. We will do this first for the max function, and then use this result
for the derivative of (4.19).

Lemma 4.4 For any v and z ∈ R
r×r ,

D max(z) · v = 〈v, Ĕk∗,l∗〉, (4.21)

5Again, we have established a relationship between (̂n1,
̂1) and (n2,
2)—in particular, n̂1 = rn2
and
̂1 = r
2. If n̂1 or
̂1 is not divisible by r , we can add padding or boundary conditions as in
the convolution.
6Also C and cj , AND Ψ and ψ .

4.2 Convolutional Neural Networks 47

where

(k∗, l∗) = arg max
(k,l)∈[r]×[r]

〈z, Ĕk,l〉

are the indices at which the maximum occurs.

Proof We will use the definition of the derivative to prove (4.21):

D max(z) · v = d

dt
max(z + tv)

∣∣∣∣
t=0

= d

dt
max

(k,l)∈[r]×[r]
〈z + tv, Ĕk,l〉

∣∣∣∣
t=0

= d

dt
〈z + tv, Ĕk∗,l∗〉

∣∣∣∣
t=0

= 〈v, Ĕk∗,l∗〉,

where the third equality follows from the fact that max(z) outputs the maximum
value of 〈z, Ĕk,l〉 over all (k, l) ∈ [r] × [r], and the index of this maximum is
unchanged after adding tv to z for sufficiently small t .

Remark 4.2 In Lemma 4.4, we assume a unique maximum value. If the maximum
value is not unique, i.e. there are multiple choices for (k∗, l∗), we can either average
the contributions from the argument of each maximum or pick one of the maximums
at random. Neither of the two solutions changes the output of the max function; they
only change its derivative. We will choose to use one of the maximums at random
in this section when the maximum is non-unique for simplicity.

We will also quickly examine a result concerning the inner product of the
cropping operator with a basis element, since this is a simplification which will
prove useful in determining the derivative of (4.19).

Lemma 4.5 For any z ∈ R
n̂1×
̂1 , r ∈ Z+, and k, l, k′, l′ ∈ [r],

〈κγ (k,l,r)(z), Ĕk′,l′ 〉 = 〈z, Êk′+(k−1)r,l′+(l−1)r 〉, (4.22)

where κγ (k,l,r) ∈ L(Rn̂1×
̂1;Rr×r), and γ (k, l, r) is defined as in (4.17).

Proof We will prove this directly from the definition of κ:

〈κγ (k,l,r)(z), Ĕk′,l′ 〉 = 〈κ1+(k−1)r,1+(l−1)r (z), Ĕk′,l′ 〉

=
〈

r∑

s,t=1

〈z, Ês+(k−1)r,t+(l−1)r 〉Ĕs,t , Ĕk′,l′

〉

48 4 Specific Network Descriptions

=
r∑

s,t=1

〈z, Ês+(k−1)r,t+(l−1)r 〉〈Ĕs,t , Ĕk′,l′ 〉

= 〈z, Êk′+(k−1)r,l′+(l−1)r 〉,

where the last line follows from the fact that 〈Ĕs,t , Ĕk′,l′ 〉 = δs,k′δt,l′ and δ is the
Kronecker delta.

Let us introduce notation to make the indices of (4.22) easier to read:

γ ′(k, l, k′, l′, r) ≡ (k′ + (k − 1)r, l′ + (l − 1)r). (4.23)

Now, we can finally take the derivative and adjoint of (4.19), and the associ-
ated (4.18).

Theorem 4.5 Let φ be defined as in (4.19). Then, for any yj and vj ∈ R
n̂1×
̂1 ,

Dφ(yj) · vj =
n2∑

k=1

2∑

l=1

〈vj , Êγ ′(k,l,k∗,l∗,r)〉Ek,l, (4.24)

where γ ′(k, l, k∗, l∗, r) is defined in (4.23), and

(k∗, l∗) = arg max
(k′,l′)∈[r]×[r]

〈yj , Êγ ′(k,l,k′,l′,r)〉. (4.25)

Furthermore, for any zj ∈ R
n2×
2 ,

D∗φ(yj) · zj =
n2∑

k=1

2∑

l=1

〈zj , Ek,l〉Êγ ′(k,l,k∗,l∗,r), (4.26)

and for any y = ∑m2
j=1 yj ⊗ ej ∈ R

n̂1×
̂1 ⊗ R
m2 and z = ∑m2

j=1 zj ⊗ ej ∈
R

n2×
2 ⊗ R
m2 ,

D∗Φ(y) · z =
m2∑

j=1

(
D∗φ(yj) · zj

)⊗ ej . (4.27)

Proof From the definition of φ and by the linearity of the derivative,

Dφ(yj) · vj =
n2∑

k=1

2∑

l=1

(
D max(κγ (k,l,r)(yj)) · κγ (k,l,r)(vj)

)
Ek,l .

4.2 Convolutional Neural Networks 49

We can evaluate the contents of the parentheses according to Lemma 4.4:

D max(κγ (k,l,r)(yj)) · κγ (k,l,r)(vj) = 〈κγ (k,l,r)(vj), Ĕk∗,l∗〉
= 〈vj , Êγ ′(k,l,k∗,l∗,r)〉,

where the second equality follows from (4.22), and

(k∗, l∗) = arg max
(k′,l′)∈[r]×[r]

〈κγ (k,l,r)(yj), Ĕk′,l′ 〉 = arg max
(k′,l′)∈[r]×[r]

〈yj , Êγ ′(k,l,k′,l′,r)〉

with the second equality again following from (4.22). We have thus proven (4.24)
and (4.25). Finding the adjoint is simply an exercise in linear algebra:

〈zj , Dφ(yj) · vj 〉 =
n2∑

k=1

2∑

l=1

〈zj , Ek,l〉〈vj , Êγ ′(k,l,k∗,l∗,r)〉

=
〈

n2∑

k=1

2∑

l=1

〈zj , Ek,l〉Êγ ′(k,l,k∗,l∗,r), vj

〉
,

which proves (4.26). Also,

〈z, DΦ(y) · v〉 =
m2∑

j=1

〈zj , Dφ(yj) · vj 〉

=
m2∑

j=1

〈D∗φ(yj) · zj , vj 〉

=
〈

m2∑

j=1

(
D∗φ(yj) · zj

)⊗ ej , v

〉
,

where the last line follows from (2.1). Thus, we have proven (4.27).

The Layerwise Function

We can now explicitly define the layerwise function f for a CNN, which we will
write as

f (x;W) = Φ (Ψ (C(W, x))) , (4.28)

where Ψ : Rn̂1×
̂1 ⊗ R
m2 → R

n̂1×
̂1 ⊗ R
m2 is an elementwise nonlinearity, with

associated elementwise operation ψ : R → R, defined as in (2.9). We can see that
f first convolves the input x with the filters W according to (4.15), then applies an
elementwise nonlinearity, and then performs max-pooling on the final result.

50 4 Specific Network Descriptions

4.2.2 Multiple Layers

We are now going to cast the CNN in the framework of Sect. 3.1. The first thing that
we will do is specify the spaces of the input and parameters at each layer i ∈ [L].
Suppose that our network input x consists of m1 channels, each of size n1 ×
1, and
our known response y has dimension nL+1. If we also assert that the ith layer will
take in an mi-channelled input of size ni ×
i , for 2 ≤ i ≤ L, then we have that
Ei is given by the tensor product space R

ni×
i ⊗ R
mi , for all i ∈ [L]. By setting

L+1 = mL+1 = 1, we can also ensure this holds for i = L + 1. The parameters
at layer i are given by the mi+1 filter matrices each of size pi × qi—which we will
denote by Wi ∈ R

pi×qi ⊗ R
mi+1 .

We will slightly adjust f as defined in (4.28) to a function fi which depends on
the layer i, and adjust the maps comprising it accordingly, i.e.

fi(xi) = Φi (Ψi(Ci(Wi, xi))) , (4.29)

such that fi : R
ni×
i ⊗ R

mi → R
ni+1×
i+1 ⊗ R

mi+1 , for i ∈ [L]. Notice that
we have again suppressed the dependence of fi on the parameters Wi , for ease of
composition. We define the network prediction F as in (3.1).

The final layer of a CNN is generally fully-connected, bearing similarity to a
layer of an MLP. To implement this, we will set ΦL and κL—the pooling and
cropping operators at layer L, respectively—to be identity maps, which implies
nL = pL = n̂L,
L = qL =
̂L, and rL = 1.

4.2.3 Single-Layer Derivatives

We will require the derivatives of (4.29), and their adjoints, to derive a gradient
descent step algorithm; we present these below in Theorem 4.6.

Theorem 4.6 For any xi ∈ R
ni×
i ⊗ R

mi , Wi ∈ R
pi×qi ⊗ R

mi+1 , and i ∈ [L],

∇Wi
fi(xi) = DΦi (Ψi(Ci(Wi, xi))) · DΨi(Ci(Wi, xi)) · (Ci �xi) , (4.30)

Dfi(xi) = DΦi (Ψi(Ci(Wi, xi))) · DΨi(Ci(Wi, xi)) · (Wi�Ci) , (4.31)

where fi is defined as in (4.29). Furthermore,

∇∗
Wi

fi(xi) = (Ci �xi)
∗ · DΨi(Ci(Wi, xi)) · D∗Φi (Ψi(Ci(Wi, xi))) , (4.32)

D∗fi(xi) = (Wi�Ci)
∗ · DΨi(Ci(Wi, xi)) · D∗Φi (Ψi(Ci(Wi, xi))) . (4.33)

4.2 Convolutional Neural Networks 51

Proof Equations (4.30) and (4.31) are both direct consequences of the chain rule
and linearity of the derivative. Also, we can derive (4.32) and (4.33) using the
reversing property of the adjoint, and the fact that D∗Ψi(zi) is self-adjoint for any zi

by Proposition 2.1.

4.2.4 Gradient Descent Step Algorithm

We can easily insert the maps D∗fi(xi) and ∇∗
Wi

fi(xi) into Algorithm 3.2.1—
or, equivalently, into (3.11) and (3.7) or (3.10)—to generate an algorithm for
one step of gradient descent for a CNN, and we present this in Algorithm 4.2.1.
Unlike Sect. 4.1.3, we will not explicitly give the forms for backpropagation and
∇∗

Wi
J (x, y; θ) in separate theorems, as these are simple extensions of the forms

in (4.8) and (4.9) and are included in the algorithm.
We give Algorithm 4.2.1 the following inputs: the network input and known

response (x, y) ∈ (
R

n1×
1 ⊗ R
m1
) × R

nL+1 , the filters θ ≡ {W1, . . . ,WL}, the
learning rate η ∈ R+, and the type of problem under consideration, type ∈
{regression, classification}. We obtain an updated set of filters upon completion
of the algorithm. In Algorithm 4.2.1, we have elected not to insert the explicit
formulae for (W�C)∗, (C �x)∗, DΨ , and D∗Φ to make the algorithm easier to read;
these are available in Theorem 4.4, Theorem 4.3, Proposition 2.1, and Theorem 4.5,
respectively. We can extend Algorithm 4.2.1 similarly to Algorithm 3.3.1, including
the use of a higher-order loss function which we explored in [1].

Algorithm 4.2.1 One iteration of gradient descent for a CNN
1: function GRADDESCCNN(x, y, θ, type, η)
2: x1 ← x

3: for i ∈ {1, . . . , L} do � xL+1 = F(x; θ)

4: zi ← Ψi(Ci(Wi, xi))

5: xi+1 ← Φ(zi) � Inserted specific definition of fi

6: for i ∈ {L, . . . , 1} do
7: W̃i ← Wi � Store old Wi for updating Wi−1
8: if i = L and type = regression then
9: eL ← xL+1 − y

10: else if i = L and type = classification then
11: eL ← σ(xL+1) − y

12: else
13: ei ←

(
W̃i+1�Ci+1

)∗ · DΨi+1

(
Ci+1(W̃i+1, xi+1)

)
· D∗Φi+1(zi+1) · ei+1

14: � Inserted D∗fi+1 from (4.33) into (3.11). Backpropagation for CNNs.

15: ∇Wi
J (x, y; θ) ← (Ci �xi)

∗ · DΨi(Ci(Wi, xi)) · D∗Φi(zi) · ei

16: � Inserted ∇∗
Wi

fi from (4.32) into (3.7) (regression) or (3.10) (classification)

17: Wi ← Wi − η∇Wi
J (x, y; θ) � Parameter update step

18: return θ

52 4 Specific Network Descriptions

4.3 Deep Auto-Encoder

The final network that we will describe in this chapter is the 2L-layer Deep Auto-
Encoder (DAE) of the form given in [4], albeit with layers of matrix multiplication
instead of Boltzmann Machines. The first L layers of the DAE perform an encoding
function, with the input to each of these layers being of lower dimension than the
previous layer. Then, the remaining L layers increase the size of their inputs until the
dimension of the output of the final layer is of the same dimension as the original
input. The goal of the network is to find a meaningful representation of the input
with reduced dimensionality, and we will typically pick the output of the Lth layer
as the new representation of our input. We can achieve this goal by using either the
cross-entropy or squared loss to compare the network input to the network output
(at the 2Lth layer), with the intuition being that the representation outputted by the
Lth layer will be an efficiently-compressed version of the data if it can produce a
low value for the loss when projected into higher dimensions.

The DAE shares numerous similarities with the MLP—effectively, the first L

layers of the DAE are an MLP, and we will exploit this similarity whenever possible
throughout this section. We will structure this section similarly to Sect. 4.1: we will
formulate the network, compute single-layer derivatives, and then present the loss
functions and gradient descent step algorithm. The main difference is that we will
also include weight-sharing between layers, which we will define next. We included
a large portion of this section in [2, Section 5].

4.3.1 Weight Sharing

In formulating a DAE, the first point to mention is weight-sharing across layers of
the network. The weights at any layer i ∈ [2L] have a deterministic relationship
with the weights at layer ξ(i), where we define ξ : [2L] → [2L] as

ξ(i) = 2L − i + 1 (4.34)

for all i ∈ [2L]. This function has the property that (ξ ◦ ξ)(i) = i for all i ∈ [2L].
Weight-sharing influences the spaces of inputs and parameters at layer i ∈ [2L].

If we assume that the ith layer of the DAE takes as input a vector of length ni , and
outputs a vector of length ni+1, for all i ∈ [2L], we impose the restriction

ni = nξ(i)+1

for all i ∈ [L]. We can then define the input space to the ith layer, Ei , as

Ei =
{
R

ni , 1 ≤ i ≤ L,

R
nξ(i)+1 , L + 1 ≤ i ≤ 2L.

4.3 Deep Auto-Encoder 53

We can also write the parameter spaces Hi , containing both the space of weight
matrices and bias vectors at layer i, in this form:

Hi =
{
R

ni+1×ni × R
ni+1, 1 ≤ i ≤ L,

R
nξ(i)×nξ(i)+1 × R

nξ(i) , L + 1 ≤ i ≤ 2L.

We will also introduce the function τi defining the weight sharing at layer i,
where L + 1 ≤ i ≤ 2L, as τi ∈ L(Rnξ(i)+1×nξ(i);Rnξ(i)×nξ(i)+1). The most common
choice for τi is the matrix transpose, and we compute its adjoint for this case in
Lemma 4.6, although it can be any linear operator satisfying the above signature.

Lemma 4.6 Let τ ∈ L(Rn×m;Rm×n) be defined as τ(U) = UT for all U ∈ R
n×m.

Then, for all W ∈ R
m×n,

τ ∗(W) = WT .

Proof For any U ∈ R
n×m and W ∈ R

m×n, 〈W, τ(U)〉 = 〈W, UT 〉 = tr(WU) =
tr(UW) = 〈U, WT 〉, which proves the result by the symmetry of 〈 , 〉.

4.3.2 Single-Layer Formulation

We can now write out the layerwise function fi : Rni ×(Rni+1×ni × R
ni+1
)→ R

ni+1

as

fi(xi;Wi, bi) = Ψi(Wi · xi + bi), 1 ≤ i ≤ L,

fi(xi;Wξ(i), bi) = Ψi

(
τi

(
Wξ(i)

) · xi + bi

)
, L + 1 ≤ i ≤ 2L, (4.35)

where xi is the input to layer i ∈ [2L], bi is the bias vector at layer i ∈ [2L], Wi

is the weight matrix at layer i ∈ [L], and τi(Wξ(i)) is the weight matrix at layer
i ∈ {L + 1, . . . , 2L}. We can express this in a more compact form by defining a
matrix Ki as follows:

Ki =
{

Wi, 1 ≤ i ≤ L,

τi(Wξ(i)), L + 1 ≤ i ≤ 2L.

Then, we can express the actions of layer i as

fi(xi) = Ψi(Ki · xi + bi), (4.36)

where we again suppress the explicit dependence of fi on the parameters Ki and bi .
We can now represent the network prediction function as

F = f2L ◦ · · · ◦ f1, (4.37)

54 4 Specific Network Descriptions

which is of the same form as (3.1), but with 2L layers instead of L. Notice that
layers i and ξ(i) both depend on the parameter Wi , for any i ∈ [L]; we can explicitly
demonstrate their impact on F by writing it as follows:

F = f2L ◦ · · · ◦ fξ(i) ◦ · · · ◦ fi ◦ · · · ◦ f1. (4.38)

In this section, we define αi and ωi as in (3.2) and (3.3) respectively.

4.3.3 Single-Layer Derivatives

We need to calculate the gradients of (4.36) with respect to the parameters for each
layer i ∈ [2L]. We already know how to do this for i ∈ [L] from Lemmas 4.1
and 4.2, as the form of fi is the same for the DAE and the MLP in this case. We
only have to determine the gradients of fi for i ∈ {L + 1, . . . , 2L}, and we will
present a very particular instance of the chain rule for parameter-dependent maps in
Lemma 4.7 that will allow us to then take these derivatives in Lemma 4.8.

Lemma 4.7 Let E, Ẽ,H1, and H2 be generic inner product spaces. Consider a
linear map τ ∈ L(H1;H2), and two parameter-dependent maps g : E × H1 → Ẽ

and h : E × H2 → Ẽ, such that

g(x; θ) = h(x; τ(θ))

for all x ∈ E and θ ∈ H1. Then, the following two results hold for all U ∈ H1 and
y ∈ Ẽ

∇g(x; θ) · U = ∇h(x; τ(θ)) · τ(U),

∇∗g(x; θ) · y = τ ∗ (∇∗h(x; τ(θ)) · y
)
.

Proof This is a consequence of the chain rule, the linearity of τ , and the reversing
property of the adjoint.

Lemma 4.8 Consider a function f of the form

f (x;W, b) = Ψ (τ(W) · x + b),

where x ∈ R
n, b ∈ R

m,W ∈ R
n×m, τ ∈ L(Rn×m;Rm×n), and Ψ : Rm → R

m is
an elementwise function. Then, the following hold for any U ∈ R

n×m:

∇Wf (x;W, b) · U = DΨ (z) · τ(U) · x, (4.39)

∇bf (x;W, b) = DΨ (z), (4.40)

Df (x;W, b) = DΨ (z) · τ (W), (4.41)

4.3 Deep Auto-Encoder 55

where z = τ (W) · x + b. Furthermore, the following hold for any y ∈ R
m:

∇∗
Wf (x;W, b) · y = τ ∗ ((Ψ ′(z) � y

)
xT
)

, (4.42)

∇∗
bf (x;W, b) = DΨ (z), (4.43)

D∗f (x;W, b) = τ (W)∗ · DΨ (z). (4.44)

Proof We computed the derivatives and corresponding adjoints of a map of the form

f̃ (x; W̃ , b) = Ψ (W̃ · x + b)

in Lemmas 4.1 and 4.2, where W̃ ∈ R
m×n. Then, Eqs. (4.39) and (4.42) are

consequences of Lemma 4.7. Equations (4.40) and (4.41) also follow from deriva-
tives calculated in Lemma 4.1, along with the chain rule and the linearity of τ .
Equations (4.43) and (4.44) follow from the reversing property of the adjoint and
the self-adjointness of DΨ (z) from Proposition 2.1.

4.3.4 Loss Functions and Gradient Descent

The loss function for the DAE is also slightly different than the one provided
in Sect. 3.2, as we replace the y in either (3.6) or (3.9) with x. The DAE is an
unsupervised learning algorithm, meaning that we do not have access to a response
variable y. Furthermore, we will no longer refer to regression or classification, as
those are only relevant for supervised learning algorithms, although we will still
maintain the distinction between the squared and cross-entropy losses. In a DAE,
we can write the squared loss as

JR(x; θ) = 1

2
〈F(x; θ) − x, F (x; θ) − x〉, (4.45)

where θ ≡ {W1, . . . ,WL, b1, . . . , b2L} represents the parameter set, and x ∈ R
n1 is

the input data point. We can write the cross-entropy loss as

JC(x; θ) = −〈x, (Log ◦ σ) (F (x; θ))〉. (4.46)

We first need to calculate ∇∗
Wi

F (x; θ), for any i ∈ [L], before we can calculate the
gradients of (4.45) and (4.46).

Lemma 4.9 For any x ∈ R
n1 and i ∈ [L],

∇∗
Wi

F (x; θ) = ∇∗
Wi

fξ(i)(xξ(i)) · D∗ωξ(i)+1(xξ(i)+1) (4.47)

+ ∇∗
Wi

fi(xi) · D∗ωi+1(xi+1),

where xj = αj−1(x) for all j ∈ [2L], αj and ωj are defined as in (3.2) and (3.3),
respectively, and ξ is defined in (4.34).

56 4 Specific Network Descriptions

Proof Recall that only two of the functions comprising F in (4.38) depend on Wi :
fi and fξ(i). Hence, by the product and chain rule,

∇Wi
F (x; θ) = Dωξ(i)+1(xξ(i)+1) · ∇Wi

fξ(i)(xξ(i)) + Dωi+1(xi+1) · ∇Wi
fi(xi).

We can take the adjoint of this equation and recover (4.47) by the reversing property
of the adjoint.

Theorem 4.7 Let J be defined as in either (4.45) or (4.46), F be defined as
in (4.37), and ωi be defined as in (3.3). Then, for all i ∈ [L] and x ∈ R

n1 ,

∇Wi
J (x; θ) = (Ψ ′

i (zi) � (D∗ωi+1(xi+1) · e
))

xT
i (4.48)

+ τ ∗
ξ(i)

[(
Ψ ′

ξ(i)(zξ(i)) � (D∗ωξ(i)+1(xξ(i)+1) · e
))

xT
ξ(i)

]
,

where xj = αj−1(x) and zj = Kj · xj + bj for all j ∈ [2L], and the error e is

e =
{

F(x; θ) − x, for squared loss,

σ (F (x; θ)) − x, for cross-entropy loss.
(4.49)

Furthermore, for all i ∈ [2L],

∇bi
J (x; θ) = Ψ ′

i (zi) � (D∗ωi+1(xi+1) · e
)
, (4.50)

with e defined as in (4.49).

Proof Proving Eq. (4.50) for any i ∈ [L] is the same as proving (4.10) and is
omitted.

As for (4.48), we can show that

∇Wi
J (x; θ) = ∇∗

Wi
F (x; θ) · e (4.51)

using a similar argument to those used to derive (3.7) or (3.10), where we define e

as in (4.49). We know how to compute ∇∗
Wi

F (x; θ) from (4.47), and we know that

∇∗
Wi

fi(xi) · u = (Ψ ′
i (zi) � u

)
xT
i (4.52)

for any u ∈ R
ni+1 and i ∈ [L] from (4.5). Now, since i ∈ [L], we have that

ξ(i) ∈ {L + 1, . . . , 2L},

which means that we use the definition of fξ(i) from (4.35), i.e.

fξ(i)(xξ(i)) = Ψξ(i)

(
τξ(i)(Wi) · xξ(i) + bξ(i)

)
.

4.4 Conclusion 57

Thus, from Lemma 4.8, we have that

∇∗
Wi

fξ(i)(xξ(i)) · v = τ ∗
ξ(i)

((
Ψ ′

ξ(i)

(
zξ(i)

)� v
)

xT
ξ(i)

)
(4.53)

for any v ∈ R
nξ(i)+1 and any i ∈ [L], where zξ(i) = τξ(i)(Wi) · xξ(i) + bξ(i).

Hence, we can recover (4.48) by setting v = D∗ωξ(i)+1(xξ(i)+1) · e in (4.53),
setting u = D∗ωi+1(xi+1) · e in (4.52), and then adding them together according
to (4.47).

The final step before taking the loss function gradients is backpropagation, and
we will see in Theorem 4.8 that this has the same form as in an MLP.

Theorem 4.8 (Backpropagation in DAEs) With fi defined as in (4.36) and ωi

given as in (3.3), then for any xi ∈ R
ni , v ∈ R

n2L+1 , and i ∈ [2L],

D∗ωi(xi) · v = KT
i · (Ψ ′

i (zi) � (D∗ωi+1(xi+1) · v
))

,

where zi = Ki · xi + bi .

Proof Since fi(xi) = Ki · xi + bi , where Ki is independent of xi , we can prove this
result in the same way as Theorem 4.1, replacing Wi with Ki .

As in the previous sections, we complete this one by presenting an algorithm for
one step of gradient descent. Algorithm 4.3.1 takes as input the network input point
x ∈ R

n1 , the parameters θ ≡ {W1, . . . ,WL, b1, . . . , b2L}, the learning rate η ∈ R+,
and the type of loss function that we are using, loss ∈ {squared, cross-entropy}. We
again receive an updated set of parameters upon completion of the algorithm. We
can extend Algorithm 4.3.1 to a batch of points, regularization, and a higher-order
loss function; we covered the higher-order loss case for DAEs in [2].

4.4 Conclusion

We have demonstrated in this chapter how to apply the generic formulation from
the previous chapter to the specific examples of the MLP, CNN, and DAE. We have
also seen how to manage a complicated layerwise function, as in the CNN, and
how to work with parameters which are dependent on other layers, as in the DAE.
Furthermore, we have presented algorithms for one step of gradient descent, again
directly over the inner product space in which the parameters reside. In the next
chapter, we will take the dependence between layers one step further and explore a
method for representing the sequence-parsing Recurrent Neural Network.

58 4 Specific Network Descriptions

Algorithm 4.3.1 One iteration of gradient descent in a DAE
1: function GRADDESCDAE(x, θ, loss, η)
2: x1 ← x

3: for i ∈ {1, . . . , 2L} do � x2L+1 = F(x; θ)

4: if i <= L then
5: Ki ← Wi

6: else
7: Ki ← τi(Wξ(i))

8: zi ← Ki · xi + bi

9: xi+1 ← Ψi(zi) � Inserted specific definition of fi

10: for i ∈ {2L, . . . , 1} do
11: if i = 2L and loss = squared then
12: e2L ← x2L+1 − x

13: else if i = 2L and loss = cross-entropy then
14: e2L ← σ(x2L+1) − x

15: else
16: ei ← KT

i+1 · (Ψ ′
i+1(zi+1) � ei+1

) � Theorem 4.8; DAE backpropagation

17: ∇bi
J (x; θ) ← Ψ ′

i (zi) � ei � (4.50); J is from either (4.45) or (4.46)
18: bi ← bi − η∇bi

J (x; θ)

19: if i > L then
20: ∇Wξ(i)

J (x; θ) ← τ ∗
i

((
Ψ ′

i (zi) � ei

)
xT
i

) � Second term in (4.48)
21: else
22: ∇Wi

J (x; θ) ← ∇Wi
J (x; θ) + (Ψ ′

i (zi) � ei

)
xT
i � Add first term in (4.48)

23: Wi ← Wi − η∇Wi
J (x; θ)

24: return θ

References

1. A.L. Caterini, D.E. Chang, A geometric framework for convolutional neural networks.
arXiv:1608.04374 (2016, preprint)

2. A.L. Caterini, D.E. Chang, A novel representation of neural networks. arXiv:1610.01549 (2016,
preprint)

3. I. Goodfellow, Y. Bengio, A. Courville, Deep Learning (MIT Press, Cambridge, 2016). http://
www.deeplearningbook.org

4. G. Hinton, R. Salakhutdinov, Reducing the dimensionality of data with neural networks. Science
313(5786), 504–507 (2006)

5. A. Jain, Fundamentals of Digital Image Processing (Prentice-Hall, Englewood, 1989)
6. F. Rosenblatt, The perceptron: a probabilistic model for information storage and organization in

the brain. Psychol. Rev. 65(6), 386 (1958)

http://www.deeplearningbook.org
http://www.deeplearningbook.org

Chapter 5
Recurrent Neural Networks

We applied the generic neural network framework from Chap. 3 to specific network
structures in the previous chapter. MLPs and CNNs fit squarely into that framework,
and we were also able to modify it to capture DAEs. We will now extend the
generic framework even further to handle Recurrent Neural Networks (RNNs), the
sequence-parsing network structure containing a recurring latent, or hidden, state
that evolves at each layer of the network. This will involve the development of new
notation, but we will remain as consistent as possible with previous chapters.

The specific layout of this chapter is as follows. We will first formulate a generic,
feed-forward recurrent neural network. We will calculate loss function gradients
for these networks in two ways: Real-Time Recurrent Learning (RTRL) [15] and
Backpropagation Through Time (BPTT) [10]. Using our notation for vector-valued
maps, we will derive these algorithms directly over the inner product space in which
the parameters reside. We will then proceed to formally represent a vanilla RNN,
which is the simplest form of RNN, and we will formulate RTRL and BPTT for that
as well. At the end of the chapter, we briefly mention modern RNN variants in the
context of our generic framework.

5.1 Generic RNN Formulation

We will begin to work outside of the framework developed in Sect. 3.1 to describe
the RNN, as it is a completely different style of neural network. We first introduce
notation for sequences, then discuss the forward propagation of the hidden state,
and then we introduce the loss functions and two gradient descent methods for the
RNN: RTRL and BPTT.

© The Author(s) 2018
A. L. Caterini, D. E. Chang, Deep Neural Networks in a Mathematical Framework,
SpringerBriefs in Computer Science, https://doi.org/10.1007/978-3-319-75304-1_5

59

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75304-1_5&domain=pdf
https://doi.org/10.1007/978-3-319-75304-1_5

60 5 Recurrent Neural Networks

5.1.1 Sequence Data

In the most general case, the input to an RNN, which we will denote x, is a sequence
of bounded length, i.e.

x ≡ (x1, . . . , xL) ∈ Ex × . . . × Ex︸ ︷︷ ︸
L times

≡ EL
x ,

where Ex is some inner product space, EL
x is shorthand for the direct product of

L copies of Ex , and L ∈ Z+ is the maximum sequence length for the particular
problem. We can also write the RNN target variables, which we will denote y, as a
sequence of bounded length, i.e.

y ≡ (y1, . . . , yL) ∈ Ey × . . . × Ey︸ ︷︷ ︸
L times

≡ EL
y ,

where Ey is also an inner product space.
When using an RNN, our datasets will be of the form D = {(x(j), y(j))}nj=1,

where (x(j), y(j)) ∈ EL
x × EL

y for all j ∈ [n]. However, sequences are generally of
varying length, so any particular x(j) may only have
 < L elements; for those
points, we will simply not calculate the loss or prediction beyond the
th layer
of the network. Similarly, a given y(j) may not contain a target value for each
i ∈ [L]; again, we only calculate the loss when there is actually a target value. Thus,
without loss of generality, we will only present the case where the data point we are
considering, (x(j∗), y(j∗)) ≡ (x, y) ∈ D, is full, i.e. x is of length L and y contains
L target points. We also assume that 〈1, yi〉 = 1 for all i ∈ [L] throughout this
chapter when considering the case of classification.

5.1.2 Hidden States, Parameters, and Forward Propagation

One feature that makes RNNs unique is that they contain a hidden state—initialized
independently from the inputs—that is propagated forward at each layer i. Note that
in the context of RNNs, we consider one layer to be both the evolution of the hidden
state and the resulting prediction generated post-evolution. We will refer to the inner
product space of hidden states as Eh. The method of propagating the hidden state
forward is also the same at each layer, which is another unique property of RNNs. It
is governed by the same functional form and the same set of transition parameters
θ ∈ HT , where HT is some inner product space. This is the recurrent nature of
RNNs: each layer performs the same operations on the hidden state, with the only
difference between layers being that the input data is xi ∈ Ex at layer i ∈ [L].

5.1 Generic RNN Formulation 61

To solidify this concept, we will introduce a generic layerwise function f : Eh ×
Ex × HT → Eh that governs the propagation of the hidden state forward at each
layer. We can express this for any h ∈ Eh, x ∈ Ex , and θ ∈ HT as

f (h; x; θ) ∈ Eh.

Now consider a data point x ∈ EL
x as we described above. We assert that the ith

layer of the RNN will take as input the (i − 1)th hidden state, which we will denote
hi−1 ∈ Eh, and the ith value of x, which is xi ∈ Ex , for all i ∈ [L]. The forward
propagation of the hidden state after the ith layer is given by

hi ≡ f (hi−1; xi; θ),

where h0 ∈ Eh is the initial hidden state, which can either be learned as a parameter
or initialized to some fixed vector. For ease of composition, we again will suppress
the parameters of f , but we will also suppress the input xi in this formulation such
that

hi ≡ fi(hi−1)

for all i ∈ [L].1 Notice that fi retains implicit dependence on xi and θ . We refer to
hi as the state variable for the RNN, as it is the quantity that we propagate forward
at each layer.

We can define the head map as in (3.2), but with the argument corresponding to
a hidden state, i.e. for all i ∈ [L], we define αi : Eh → Eh as

αi = fi ◦ · · · ◦ f1, (5.1)

and we define α0 to be the identity map on Eh. If we view the RNN as a discrete-time
dynamical system, we could also call αi the flow of the system. We will introduce
a new map to aide in the calculation of derivatives, μj,i : Eh → Eh, which
accumulates the evolution of the hidden state from layer i ∈ [L] to j ∈ {i, . . . , L}
inclusive, i.e.

μj,i = fj ◦ · · · ◦ fi. (5.2)

We will also set μj,i to be the identity on Eh for j < i, which we extend to include
the case when i > L, i.e.

μj,i = id

whenever i > min(j, L).

1We have adopted a slightly different indexing convention in this chapter—notice that fi takes
in hi−1 and outputs hi , as opposed to the previous chapters where we evolved the state variable
according to xi+1 = fi(xi). This indexing convention is more natural for RNNs, as we will see
that the ith prediction will depend on hi with this adjustment, instead of on hi+1.

62 5 Recurrent Neural Networks

5.1.3 Prediction and Loss Functions

Recall that we have a target variable at each layer i ∈ [L], meaning that we should
also have a prediction at each layer. As in the previous section, we will enforce that
the prediction also has the same functional form and set of prediction parameters
at each layer. The prediction function g takes in a hidden state h ∈ Eh and a set
of prediction parameters ζ ∈ HP , and outputs an element of Ey , i.e. g : Eh ×
HP → Ey . Often, we will suppress the dependence of g on the parameters such
that g : Eh → Ey again for ease of composition. We can then write the prediction
at layer i ∈ [L] in several ways:

ŷi = g(hi) = (g ◦ μi,k

)
(hk−1) = (g ◦ αi) (h) (5.3)

for any k ≤ i, where hi = αi(h) for all i ∈ [L], and h ≡ h0 ∈ Eh is the initial
hidden state.

Since we have a prediction at every layer, we will also have a loss at each layer.
The total loss for the entire network, J , is the sum of these losses, i.e.

J =
L∑

i=1

J (yi, ŷi), (5.4)

where J : Ey × Ey → R is either the squared or cross-entropy loss. Recall that we
can define the squared loss as

JR(y, ŷ) = 1

2
〈y − ŷ, y − ŷ〉 (5.5)

and the cross-entropy loss as

JC(y, ŷ) = −〈y, (Log ◦ σ) (ŷ)〉. (5.6)

We have lightened the notation in this chapter compared to the previous so that it
does not become unwieldy, but it is important to note that ŷi from (5.4) depends on
the initial state h, the transition parameters θ , the prediction parameters ζ , and the
input sequence up to layer i, given by xi ≡ (x1, . . . , xi).

5.1.4 Loss Function Gradients

We will need to take derivatives of the loss function (5.4) with respect to the
parameters. We can easily take the derivatives of the loss with respect to the
prediction parameters ζ . As for the transition parameters θ , there are two prevailing
methods: RTRL, where we only send derivatives forward throughout the network

5.1 Generic RNN Formulation 63

[15], and BPTT, where we go through the entire network first and then send
derivatives backward [10]. In practice, basic RTRL is very slow compared to BPTT
[11], but we can derive it more intuitively than BPTT and so it serves as a good
starting point. Furthermore, RTRL can sometimes be applicable to streams of data
that must be processed as they arrive.

Prediction Parameters

We would like to compute ∇ζJ , where we define J in (5.4), and J is either JR ,
from (5.5), or JC , from (5.6). Since the differential operator ∇ζ is additive, we have

∇ζJ =
L∑

i=1

∇ζ (J (yi, ŷi)) ,

where we enclose J (yi, ŷi) in parentheses to emphasize that we will first evaluate
J (yi, ŷi), and then take its derivative with respect to ζ .

Theorem 5.1 For any yi ∈ Ey , hi ∈ Eh, and i ∈ [L],

∇ζ (J (yi, ŷi)) = ∇∗
ζ g(hi) · ei, (5.7)

where ŷi is defined in (5.3), J is either the squared or cross-entropy loss, and

ei =
{

ŷi − yi, if J is the squared loss,

σ(ŷi) − yi, if J is the cross-entropy loss,
(5.8)

is the prediction error at layer i.

Proof We can prove this theorem similarly to Theorems 3.1 and 3.2, although the
notation is a bit different. If we suppose J is the cross-entropy loss, then for any
i ∈ [L] and U ∈ HP ,

∇ζ (JC(yi, ŷi)) · U = ∇ζ (−〈yi, (Log ◦ σ) (g(hi))〉) · U

= −〈yi, D (Log ◦ σ) (g(hi)) · ∇ζ g(hi) · U 〉
= −〈∇∗

ζ g(hi) · D∗ (Log ◦ σ) (g(hi)) · yi, U 〉
= 〈∇∗

ζ g(hi) · (σ (ŷi) − yi) , U 〉,

where the second line is true since hi has no dependence on ζ , and the fourth line is
from Lemma 2.6. Then, by the canonical isomorphism discussed in Remark 3.1, we
have proven (5.7) for the case when J is the cross-entropy loss. We omit the case
when J is the squared loss as it is easy to extend from this proof.

64 5 Recurrent Neural Networks

Real-Time Recurrent Learning

We will now proceed with the presentation of the RTRL algorithm for calculating
the gradient of (5.4) with respect to the transition parameters θ . We will first show
the forward propagation of the derivative of the head map in Lemma 5.1, and then
proceed to calculate the derivatives of (5.4) with respect to θ in Theorem 5.2.

Lemma 5.1 For any h ∈ Eh and i ∈ [L], with αi defined in (5.1),

∇∗
θ αi(h) = ∇∗

θ αi−1(h) · D∗fi(hi−1) + ∇∗
θ fi(hi−1), (5.9)

where hi−1 = αi−1(h).

Proof We know that for any i ∈ [L], αi = fi ◦αi−1. Since both fi and αi−1 depend
on θ , to take the derivative of their composition we must combine the chain rule
with the product rule: first hold αi−1 constant with respect to θ and differentiate fi ,
and then hold fi constant with respect to θ and differentiate αi−1. In particular,

∇θαi(h) = ∇θ (fi ◦ αi−1) (h) = ∇θfi(hi−1) + Dfi(hi−1) · ∇θαi−1(h) (5.10)

since hi−1 = αi−1(h). Then, by taking the adjoint, we recover (5.9). Note that (5.9)
still holds when i = 1, as α0 is the identity on Eh with no dependence on the
parameters θ , and thus ∇∗

θ α0(h) is the zero operator.

Theorem 5.2 (Real-Time Recurrent Learning) For any h ∈ Eh, yi ∈ Ey , and
i ∈ [L],

∇θ (J (yi, ŷi)) = ∇∗
θ αi(h) · D∗g(hi) · ei, (5.11)

where J is either JR or JC , hi = αi(h), αi is defined in (3.2), ŷi is defined in (5.3),
and ei is defined in (5.8).

Proof We will again proceed with only the case of cross-entropy loss; the case of
squared loss is a minor extension and is omitted. For any U ∈ HT ,

∇θ (JC(yi, ŷi)) · U = ∇θ {− 〈yi, (Log ◦ σ) (g(αi(h)))〉} · U

= −〈yi, D (Log ◦ σ) (g(hi)) · Dg(hi) · ∇θαi(h) · U 〉
= −〈∇∗

θ αi(h) · D∗g(hi) · D∗ (Log ◦ σ) (g(hi)) · yi, U 〉
= 〈∇∗

θ αi(h) · D∗g(hi) · (σ (ŷi) − yi) , U 〉.

Therefore, by the canonical isomorphism and since ei = σ(ŷi) − yi , we have
proven (5.11).

Note that even though we do not have access to ei and hi until layer i, we
can still propagate the linear map ∇∗

θ αi(h) forward without an argument at each

5.1 Generic RNN Formulation 65

Algorithm 5.1.1 One iteration of gradient descent for an RNN via RTRL
1: function GRADDESCRTRL(x, y, h, θ, ζ, loss, η)
2: h0 ← h

3: ∇θJ ← 0 � 0 in HT , the inner product space in which θ resides
4: ∇ζJ ← 0 � 0 in HP , the inner product space in which ζ resides
5: for i ∈ {1, . . . , L} do
6: hi ← fi(hi−1) � fi depends on θ, xi

7: ŷi ← g(hi)

8: ∇∗
θ αi(h) ← ∇∗

θ αi−1(h) · D∗fi(hi−1) + ∇∗
θ fi(hi−1)

9: if loss = squared then
10: ei ← ŷi − yi

11: else
12: ei ← σ(ŷi) − yi

13: ∇θJ ← ∇θJ + ∇∗
θ αi(h) · D∗g(hi) · ei � Add accumulated gradient at each layer

14: ∇ζJ ← ∇ζJ + ∇∗
ζ g(hi) · ei

15: θ ← θ − η∇θJ � Parameter update steps
16: ζ ← ζ − η∇ζJ
17: return θ, ζ

layer i according to (5.9), and then use this to calculate (5.11). This is the real-
time aspect of RTRL, as it allows for exact gradient computation at each layer i

without knowledge of the information at future layers. Unfortunately, this forward
propagation is also what makes RTRL slow compared to BPTT. Nevertheless, we
present a generic algorithm for performing one step of gradient descent via RTRL
in Algorithm 5.1.1. As input to the algorithm, we provide the sequence input x and
associated targets y, the initial state h, the transition parameters θ , the prediction
parameters ζ , the learning rate η, and the type of loss function, loss ∈ {squared,
cross-entropy}. We receive, as output, a parameter set updated by a single step of
gradient descent.

Backpropagation Through Time

We can derive a more efficient method for gradient calculation with respect to the
transition parameters in RNNs known as BPTT. Even though we must traverse the
network both forwards and backwards to execute BPTT, the forward and backward
steps combined are far more computationally efficient than RTRL [11]. Note that we
will use the notation Dhi

to denote the action of taking the derivative with respect to
the state hi in this section, for any i ∈ [L]. We use this, as opposed to ∇hi

, since hi

is a state variable.
The first part of BPTT that we will derive is the backpropagation step, which

sends the error at layer i ∈ [L] backwards throughout the network. To do this, we
will calculate Dμj,i+1(hi) for j ≥ i + 1 in Lemma 5.2, and then use this result to
derive the recurrence in Theorem 5.3.

66 5 Recurrent Neural Networks

Lemma 5.2 For any hi ∈ Eh, i ∈ [L − 1], and j ∈ [L] with j ≥ i + 1,

Dμj,i+1(hi) = Dμj,i+2(hi+1) · Dfi+1(hi) (5.12)

where hi+1 = fi+1(hi) and μj,i is defined in (5.2). Furthermore, Dμi,i+1(hi) is the
identity map on Eh.

Proof First of all, since μi,i+1 is the identity on Eh, we automatically have that
Dμi,i+1(hi) is the identity on Eh.

Furthermore, for j ≥ i + 1, by the definition of μj,i+1 we have that

μj,i+1 = μj,i+2 ◦ fi+1.

Therefore, by the chain rule, for any hi ∈ Eh,

Dμj,i+1(hi) = D(μj,i+2 ◦ fi+1)(hi)

= Dμj,i+2(hi+1) · Dfi+1(hi),

since hi+1 = fi+1(hi).

Theorem 5.3 (Backpropagation Through Time) For any i ∈ [L] and hi ∈ Eh,
with J defined as in (5.4),

Dhi
J = D∗fi+1(hi) · Dhi+1J + D∗g(hi) · ei, (5.13)

where we set DhL+1J to be the zero vector in Eh and we define ei as in (5.8).

Proof We can prove this directly from the definition of J for the cross-entropy loss
case. For any v ∈ Eh,

Dhi
J · v = Dhi

⎛

⎝−
L∑

j=1

〈yj , (Log ◦ σ)
(
g(αj (h)

)〉
⎞

⎠ · v

= Dhi

⎛

⎝−
L∑

j=i

〈yj , (Log ◦ σ)
(
g(μj,i+1(hi))

)〉
⎞

⎠ · v (5.14)

= −
L∑

j=i

〈yi, D (Log ◦ σ) (ŷj) · Dg(hj) · Dμj,i+1(hi) · v〉 (5.15)

=
L∑

j=i

〈D∗μj,i+1(hi) · D∗g(hj) · ej , v〉, (5.16)

5.1 Generic RNN Formulation 67

where (5.14) holds since the loss from layers j < i is not impacted by hi , (5.15)
holds from the chain rule in (2.3), and (5.16) holds by Lemma 2.6 and the definition
of the adjoint. Therefore, by the canonical isomorphism, we can represent Dhi

J as
an element of Eh according to

Dhi
J =

L∑

j=i

D∗μj,i+1(hi) · D∗g(hj) · ej (5.17)

for any i ∈ [L]. We can manipulate (5.17) as follows when i < L:

Dhi
J = D∗μi,i+1(hi) · D∗g(hi) · ei +

L∑

j=i+1

D∗μj,i+1(hi) · D∗g(hj) · ej

= D∗g(hi) · ei +
L∑

j=i+1

D∗fi+1(hi) · D∗μj,i+2(hi+1) · D∗g(hj) · ej

(5.18)

= D∗g(hi) · ei + D∗fi+1(hi) ·
⎛

⎝
L∑

j=i+1

D∗μj,i+2(hi+1) · D∗g(hj) · ej

⎞

⎠ ,

(5.19)

where (5.18) follows from Lemma 5.2 and the reversing property of the adjoint. We
recognize

∑L
j=i+1 D∗μj,i+2(hi+1) · D∗g(hj) · ej in (5.19) as Dhi+1J from (5.17),

and thus we have proven (5.13) for i < L.
As for when i = L, it is quite easy to show that DhL

J = D∗g(hL)·eL, which also
proves (5.13) for this case since we set DhL+1J to zero. Thus, we have proven (5.13)
for all i ∈ [L].

We again omit the proof for the case of squared loss as it is not a difficult
extension.

Remark 5.1 Here we have followed the convention that only hi is treated as an
independent variable in computing the derivative of J with respect to hi , which we
denote as Dhi

J . There is some ambiguity here, however, since hi can be viewed as
αi(h0). In order to avoid this ambiguity, we could just define Dhi

J as the expression
on the right-hand side in (5.17) without giving it the meaning of a derivative. We
will see that Theorem 5.4 will still hold under this interpretation.

We will present the gradient of J with respect to the transition parameters for
BPTT in Theorem 5.4 after first presenting a useful result in Lemma 5.3. The
expression that we will derive relies heavily on the recursion from Theorem 5.3,
similarly to how Theorems 3.1 and 3.2 depend on the recursion from Theorem 3.3.

68 5 Recurrent Neural Networks

Lemma 5.3 For any k ∈ [L] and h ∈ Eh,

∇θαk(h) =
k∑

j=1

Dμk,j+1(hj) · ∇θfj (hj−1), (5.20)

where αk is defined in (5.1), hj = αj (h) for all j ∈ [L], and μk,j+1 is defined
in (5.2).

Proof We can prove this via induction. For k = 1, since α1 = f1 and h = h0,

∇θα1(h) = ∇θf1(h0).

Also, by Lemma 5.2, Dμ1,2(h1) is the identity. Therefore, (5.20) is true for k = 1.
Now assume (5.20) holds for 2 ≤ k ≤ L − 1. Then,

∇θαk+1(h) = Dfk+1(hk) · ∇θαk(h) + ∇θfk+1(hk)

= Dfk+1(hk) ·
⎛

⎝
k∑

j=1

Dμk,j+1(hj) · ∇θfj (hj−1)

⎞

⎠

+ Dμk+1,k+2(hk+1) · ∇θfk+1(hk)

=
k+1∑

j=1

Dμk+1,j+1(hj) · ∇θfj (hj−1)

where the first line follows from (5.10), the second line from the inductive
hypothesis and the fact that Dμk+1,k+2(hk+1) is the identity, and the third line from
the fact that fk+1 ◦ μk,j+1 = μk+1,j+1, implying

Dfk+1(hk) · Dμk,j+1(hj) = Dμk+1,j+1(hj)

for j ≤ k. Thus, we have proven (5.20) for all k ∈ [L] by induction.

Theorem 5.4 For J defined as in (5.4),

∇θJ =
L∑

i=1

∇∗
θ fi(hi−1) · Dhi

J , (5.21)

where we can write Dhj
J as an element of Eh recursively according to (5.13).

Proof We can prove this directly using the results from earlier in this section:

5.1 Generic RNN Formulation 69

∇θJ =
L∑

j=1

∇∗
θ αj (h) · D∗g(hj) · ej

=
L∑

j=1

j∑

i=1

∇∗
θ fi(hi−1) · D∗μj,i+1(hi) · D∗g(hj) · ej ,

where the first equality follows from summing (5.11) over all j ∈ [L], and the
second from taking the adjoint of (5.20). We will now swap the indices to obtain the
final result, since we are summing over {(i, j) ∈ [L] × [L] : 1 ≤ i ≤ j ≤ L}:

∇θJ =
L∑

i=1

L∑

j=i

∇∗
θ fi(hi−1) · D∗μj,i+1(hi) · D∗g(hj) · ej

=
L∑

i=1

∇∗
θ fi(hi−1) ·

⎛

⎝
L∑

j=i

D∗μj,i+1(hi) · D∗g(hj) · ej

⎞

⎠

=
L∑

i=1

∇∗
θ fi(hi−1) · Dhi

J ,

where the final line comes from (5.17).

We will now present an algorithm for taking one step of gradient descent
in BPTT. The inputs and outputs are the same as Algorithm 5.1.1, with the
only difference being that we compute the gradient with respect to the transition
parameters according to BPTT and not RTRL. We will denote the backpropagated
error quantity in Algorithm 5.1.2 by

εi ≡ Dhi
J

for all i ∈ [L + 1]. We can again extend Algorithm 5.1.2 to a batch of inputs, more
complicated gradient descent algorithms, and regularization, as in Algorithm 3.2.1.

One important extension to the BPTT algorithm given in Algorithm 5.1.2 is
truncated BPTT, in which we run BPTT every
 < L timesteps down for a fixed
m < L steps [13], and then reset the error vector to zero after. Truncated BPTT
requires fewer computations than full BPTT and can also help with the problem
of vanishing and exploding gradients, as the gradients will not be propagated back
as far as in full BPTT. One potential downside is that the exact gradients will not
be calculated, although this is preferable to exact gradients if they would otherwise
explode.

70 5 Recurrent Neural Networks

Algorithm 5.1.2 One iteration of gradient descent for an RNN via BPTT
1: function GRADDESCBPTT(x, y, h, θ, ζ, loss, η)
2: h0 ← h

3: ∇θJ ← 0 � 0 in HT , the inner product space in which θ resides
4: ∇ζJ ← 0 � 0 in HP , the inner product space in which ζ resides
5: for i ∈ {1, . . . , L} do
6: hi ← fi(hi−1) � fi depends on θ, xi

7: ŷi ← g(hi)

8: if loss = squared then
9: ei ← ŷi − yi

10: else
11: ei ← σ(ŷi) − yi

12: ∇ζJ ← ∇ζJ + ∇∗
ζ g(hi) · ei � Add accumulated gradient at each layer

13: εL+1 ← 0 � 0 in Eh; Initialization of DhL+1J
14: for i ∈ {L, . . . , 1} do
15: εi ← D∗fi+1 · εi+1 + D∗g(hi) · ei � BPTT update step from (5.13)
16: ∇θJ ← ∇θJ + ∇∗

θ fi(hi−1) · εi � Add accumulated gradient at each layer

17: θ ← θ − η∇θJ � Parameter update steps
18: ζ ← ζ − η∇ζJ
19: return θ, ζ

5.2 Vanilla RNNs

We will now formulate the basic vanilla RNN [3, 10] in the framework of the
previous section. We first need to specify the hidden, input, output, and parameter
spaces, the layerwise function f , and the prediction function g. We will also take the
derivatives of f and g to develop the BPTT and RTRL methods for vanilla RNNs.
In this section, we will discuss BPTT first, since once we take the derivatives of the
layerwise function and prediction functions it is easy to insert them into the results
of the previous section. It is not as easy to handle RTRL now, though, as we will
need to introduce notation to implement the forward propagation of (5.9).

5.2.1 Formulation

Let us assume the hidden state is a vector of length nh, i.e. Eh = R
nh . Suppose also

that Ex = R
nx and Ey = R

ny . We will evolve the hidden state h ∈ R
nh according to

a hidden-to-hidden weight matrix W ∈ R
nh×nh , an input-to-hidden weight matrix

U ∈ R
nh×nx , and a bias vector b ∈ R

nh . We can then describe the hidden state
evolution as

f (h; x;W,U, b) = Ψ (W · h + U · x + b),

5.2 Vanilla RNNs 71

where Ψ : R
nh → R

nh is the elementwise nonlinearity. The tanh function is a
particularly popular choice of elementwise nonlinearity for RNNs. If we employ
the parameter and input suppression convention for each layer i ∈ [L], we can write
the layerwise function fi as

fi(hi−1) = Ψ (W · hi−1 + U · xi + b). (5.22)

The prediction function g is also parametrized by matrix-vector multiplication as
follows for any h ∈ R

nh :

g(h) = V · h + c, (5.23)

where V ∈ R
ny×nh is the hidden-to-output weight matrix, and c ∈ R

ny is the output
bias vector. We assume in this section that each vector space is equipped with the
standard Euclidean inner product 〈A, B〉 = tr

(
ABT

) = tr
(
AT B

)
.

5.2.2 Single-Layer Derivatives

We will first derive the maps Df and ∇θf , for θ ∈ {W,U, b}, and their adjoints.
Then, we will derive Dg and ∇ζ g, for ζ ∈ {V, c}, and the adjoints of those as well.

Theorem 5.5 For any hi−1 ∈ R
nh , xi ∈ R

nx , W̃ ∈ R
nh×nh , and Ũ ∈ R

nh×nx , with
fi defined as in (5.22),

Dfi(hi−1) = DΨ (zi) · W, (5.24)

∇Wfi(hi−1) · W̃ = DΨ (zi) · W̃ · hi−1, (5.25)

∇Ufi(hi−1) · Ũ = DΨ (zi) · Ũ · xi, (5.26)

∇bfi(hi−1) = DΨ (zi), (5.27)

where zi = W · hi−1 + U · xi + b. Furthermore, for any v ∈ R
nh ,

D∗fi(hi−1) = WT · DΨ (zi), (5.28)

∇∗
Wfi(hi−1) · v = (DΨ (zi) · v) hT

i−1, (5.29)

∇∗
Ufi(hi−1) · v = (DΨ (zi) · v) xT

i , (5.30)

∇∗
bfi(hi−1) = DΨ (zi). (5.31)

Proof Equations (5.24) to (5.27) are all direct consequences of the chain rule.

72 5 Recurrent Neural Networks

Equations (5.28) and (5.31) follow directly from the reversing property of the
adjoint and the self-adjointness of DΨ . We can also prove Eqs. (5.29) and (5.30) in
the exact same way as (4.5) so the proof is complete.

Theorem 5.6 For any h ∈ Eh and Ṽ ∈ R
ny×nh , with g defined as in (5.23),

Dg(h) = V, (5.32)

∇V g(h) · Ṽ = Ṽ · h, (5.33)

∇cg(h) = id. (5.34)

Furthermore, for any v ∈ R
ny ,

D∗g(h) = V T , (5.35)

∇∗
V g(h) · v = vhT , (5.36)

∇∗
c g(h) = id. (5.37)

Proof Equations (5.32)–(5.34) are consequences of the chain rule and Eqs. (5.35)–
(5.37) are simpler versions of their counterparts in Theorem 5.5.

We can use the results from Lemma 5.6 in (5.7) to calculate the loss function
derivatives with respect to the prediction parameters V and c.

5.2.3 Backpropagation Through Time

In this section, we will explicitly write out the BPTT recurrence (5.13) and full
gradient (5.21) for the case of vanilla RNNs. Then, we can easily insert these into
Algorithm 5.1.2 to perform BPTT. The equations that we will derive bear a strong
resemblance to those found in [3, Chapter 10]; however, we have explicitly shown
the derivation here and have carefully defined the maps and vectors that we are
using.

Theorem 5.7 For any i ∈ [L],

Dhi
J = WT · DΨ (zi+1) · Dhi+1J + V T · ei, (5.38)

where J is defined in (5.4), zi+1 = W · hi + U · xi+1 + b, ei is defined in (5.8), and
we set DhL+1J to be the zero vector in R

nh .

Proof We can prove this simply by inserting the definitions of D∗fi and D∗g
from (5.28) and (5.35), respectively, into (5.13).

5.2 Vanilla RNNs 73

Theorem 5.8 For J defined as in (5.4),

∇WJ =
L∑

i=1

(
DΨ (zi) · Dhi

J)hT
i−1,

∇UJ =
L∑

i=1

(
DΨ (zi) · Dhi

J) xT
i ,

∇bJ =
L∑

i=1

DΨ (zi) · Dhi
J ,

where hi = αi(h) for all i ∈ [L], and Dhi
J can be calculated recursively according

to Theorem 5.7.

Proof As with Theorem 5.7, we can prove this by inserting ∇∗
Wfi(hi−1)

from (5.29), ∇∗
Ufi(hi−1) from (5.30), or ∇∗

bfi(hi−1) from (5.31) into (5.21).

We can use the results from Theorems 5.7 and 5.8 to create a specific BPTT
algorithm for vanilla RNNs, which we present in Algorithm 5.2.1. We have the
same inputs and outputs as Algorithm 5.1.2, although our transition parameters θ

are now θ = {W,U, b}, and our prediction parameters ζ are now ζ = {V, c}.

Algorithm 5.2.1 One iteration of gradient descent for a vanilla RNN via BPTT
1: function GRADDESCVANILLABPTT(x, y, h, θ, ζ, loss, η)
2: h0 ← h

3: ∇WJ ,∇UJ ,∇bJ ← 0 � 0 in their respective spaces
4: ∇V J ,∇cJ ← 0
5: for i ∈ {1, . . . , L} do
6: zi ← W · hi−1 + U · xi + b

7: hi ← Ψ (zi) � Specific definition of fi

8: ŷi ← V · hi + c � Specific definition of g

9: if loss = squared then
10: ei ← ŷi − yi

11: else
12: ei ← σ(ŷi) − yi

13: ∇cJ ← ∇cJ + ei � Inserted (5.37) into (5.7) to accumulate gradient
14: ∇V J ← ∇V J + ei · hT

i � Inserted (5.36) into (5.7) to accumulate gradient

15: εL+1 ← 0 � 0 in Eh; Initialization of DhL+1J
16: for i ∈ {L, . . . , 1} do
17: εi ← WT · DΨ (zi+1) · εi+1 + V T · ei � BPTT update step with (5.28) and (5.35)
18: ∇bJ ← ∇bJ + DΨ (zi) · εi � Inserted (5.31) into (5.21)
19: ∇WJ ← ∇WJ + (DΨ (zi) · εi) hT

i−1 � Inserted (5.29) into (5.21)
20: ∇UJ ← ∇UJ + (DΨ (zi) · εi) xT

i � Inserted (5.30) into (5.21)

21: θ ← θ − η∇θJ � Parameter update steps for all θ, ζ

22: ζ ← ζ − η∇ζJ
23: return θ, ζ

74 5 Recurrent Neural Networks

5.2.4 Real-Time Recurrent Learning

As mentioned earlier, we will need to develop some additional machinery to imple-
ment RTRL for vanilla RNNs. Consider, for example, propagating ∇∗

Wαi(h) forward
at each layer i according to (5.9). This map is an element of L(Rnh;Rnh×nh), which
is isomorphic to R

nh×nh ⊗R
nh , implying that we require tensor product notation to

represent it. We will find that tensor products will be quite convenient and useful in
this section, as they were for representing CNNs.

Evolution Equation

For a generic parameter θ ∈ {W,U, b} and any i ∈ [L], we can write

∇∗
θ αi =

nh∑

j=1

Ai,j ⊗ ej ,

where {ej }nj=1 is an orthonormal basis for Rnh ,2 and Ai,j : Rnh → Θ is a function
from the space of hidden states to the space in which the parameter θ resides for all
i ∈ [L] and j ∈ [nh]. We can interpret this expression as follows: for any h, v ∈ R

nh

and i ∈ [L],

∇∗
θ αi(h) · v =

nh∑

j=1

Ai,j (h)〈ej , v〉 =
nh∑

j=1

〈ej , v〉Ai,j (h). (5.39)

We can also write out the right-hand side of (5.9) similarly:

(∇∗
θ αi−1(h) · D∗fi(hi−1) + ∇∗

θ fi(hi−1)) · v (5.40)

=
nh∑

j=1

〈ej , D∗fi(hi−1) · v〉Ai−1,j (h) + ∇∗
θ fi(hi−1) · v,

where hi−1 = αi−1(h). Equating (5.39) with (5.40), which is valid from (5.9), we
obtain

nh∑

j=1

〈ej , v〉Ai,j (h) =
nh∑

k=1

〈ek, D∗fi(hi−1) · v〉Ai−1,k(h) + ∇∗
θ fi(hi−1) · v,

2We use ej here instead of simply ej since we already have ei defined in (5.8) and will continue to
use it throughout this section.

5.2 Vanilla RNNs 75

or if v = ej for some j ∈ [nh],

Ai,j (h) =
nh∑

k=1

〈ek, D∗fi(hi−1) · ej 〉Ai−1,k(h) + ∇∗
θ fi(hi−1) · ej . (5.41)

Thus, we can evolve Ai,j (h), or equivalently ∇∗
θ αi(h), according to (5.41), for θ ∈

{W,U, b}, and then evaluate ∇∗
θ αi(h) as in (5.39). Also, since ∇∗

θ α0(h) is the zero
operator for all h ∈ R

nh , we initialize A0,j (h) to be zero in Θ for all j ∈ [nh].
We will quickly discuss the specific results for each parameter. For θ = W ,

AW
i,j (h) is in the same space as W , i.e. AW

i,j (h) ∈ R
nh×nh for all i ∈ [L] and j ∈ [nh].

Similarly, we have AU
i,j (h) ∈ R

nh×nx and Ab
i,j (h) ∈ R

nh . If we insert the results
from Theorem 5.5 into (5.41) for each parameter θ , we obtain the following three
recurrence equations for each of the transition parameters:

AW
i,j (h) =

nh∑

k=1

〈ek, WT · DΨ (zi) · ej 〉AW
i−1,k(h) + (DΨ (zi) · ej

)
hT

i−1, (5.42)

AU
i,j (h) =

nh∑

k=1

〈ek, WT · DΨ (zi) · ej 〉AU
i−1,k(h) + (DΨ (zi) · ej

)
xT
i , (5.43)

Ab
i,j (h) =

nh∑

k=1

〈ek, WT · DΨ (zi) · ej 〉Ab
i−1,k(h) + DΨ (zi) · ej (5.44)

for all i ∈ [L] and j ∈ [nh], where zi = W · hi−1 + U · xi + b.

Loss Function Derivatives

Once we have propagated the map ∇∗
θ αi(h) forward, we will apply it to D∗g(hi) · ei

as in (5.11). If we insert the specific definition of D∗g from (5.35) and our
representation of ∇∗

θ αi(h), we obtain

∇∗
θ αi(h) · D∗g(hi) · ei =

nh∑

j=1

〈ej , D∗g(hi) · ei〉Aθ
i,j (h)

=
nh∑

j=1

〈ej , V T · ei〉Aθ
i,j (h) (5.45)

for all i ∈ [L] and θ ∈ {W,U, b}.

76 5 Recurrent Neural Networks

Algorithm 5.2.2 One iteration of gradient descent for a vanilla RNN via RTRL
1: function GRADDESCVANILLARTRL(x, y, h, θ, ζ, loss, η)
2: h0 ← h

3: ∇WJ ,∇UJ ,∇bJ ,∇V J ,∇cJ ← 0 � 0 in their respective spaces
4: for j ∈ {1, . . . , nh} do
5: Ab

0,j (h), AW
0,j (h), AU

0,j (h) ← 0 � 0 in their respective spaces

6: for i ∈ {1, . . . , L} do
7: zi ← W · hi−1 + U · xi + b

8: hi ← Ψ (zi)

9: ŷi ← V · hi + c

10: if loss = squared then
11: ei ← ŷi − yi

12: else
13: ei ← σ(ŷi) − yi

14: for j ∈ {1, . . . , nh} do � RTRL update steps
15: vi,j ← Ψ ′(zi) � ej � Evaluated DΨ (zi) as in Proposition 2.1
16: aj,k ← 〈ek, WT · vi,j 〉 � Common term in (5.42), (5.43), and (5.44)
17: AW

i,j (h) ←∑nh

k=1 aj,kA
W
i−1,k(h) + vi,j · hT

i−1 � (5.42)

18: AU
i,j (h) ←∑nh

k=1 aj,kA
U
i−1,k(h) + vi,j · xT

i � (5.43)

19: Ab
i,j (h) ←∑nh

k=1 aj,kA
b
i−1,k(h) + vi,j � (5.44)

20: ṽi,j ← 〈ej , V T · ei〉 � Common term in RTRL gradient accumulation
21: ∇WJ ← ∇WJ +∑nh

j=1 ṽi,jA
W
i,j (h) � RTRL gradient accumulation

22: ∇UJ ← ∇UJ +∑nh

j=1 ṽi,jA
U
i,j (h)

23: ∇bJ ← ∇bJ +∑nh

j=1 ṽi,jA
b
i,j (h)

24: ∇cJ ← ∇cJ + ei � These are the same as Algorithm 5.2.1
25: ∇V J ← ∇V J + ei · hT

i

26: θ ← θ − η∇θJ � Parameter update steps for all θ, ζ

27: ζ ← ζ − η∇ζJ
28: return θ, ζ

Gradient Descent Step Algorithm

In Algorithm 5.2.2, we explicitly write out RTRL for vanilla RNNs. We replace
line 8 in Algorithm 5.1.1 with lines 17–19 in Algorithm 5.2.2 to update ∇∗

θ αi(h)

(equivalently Aθ
i,j for j ∈ [nh]) at each layer i ∈ [L] and for each transition param-

eter θ ∈ {W,U, b}. Then, we use the updated ∇∗
θ αi(h) to compute ∇θ (J (yi, ŷi)) in

lines 21–23 of Algorithm 5.2.2 as in (5.45).

5.3 RNN Variants

Beyond just the vanilla RNN, there exist numerous variants in the literature that we
will discuss quickly in this section. Vanishing and exploding gradients are prevalent
in vanilla RNNs, necessitating the development of gated RNN architectures to

5.3 RNN Variants 77

accurately model longer-term dependencies in data and control the magnitude of the
gradient flowing through the network, and we discuss these in Sect. 5.3.1. Another
extension is the Bidirectional RNN (BRNN), which we examine in Sect. 5.3.2.
BRNNs parse the input sequence both forwards and backwards, if the entire
sequence is known at the start, allowing the network to capture more information
about the sequence. Finally, we can also obtain a more expressive network structure
using Deep RNNs (DRNNs), where each layer of the recurrent network is itself
a layered DNN, and we will discuss these in Sect. 5.3.3. We can also combine the
network variants; see, for example, the deep bidirectional Long Short-Term Memory
(LSTM) developed in [4]. We include this section for completeness and to allow the
reader to further investigate RNNs, although we do not explicitly represent these
extensions in the framework developed throughout this book.

5.3.1 Gated RNNs

Gated RNNs have demonstrated the ability to learn long-term dependencies within
sequences by controlling the flow of gradients with a series of gating mechanisms
for hidden-state evolution [2]. The gates introduced result in a more complicated
layerwise function, but the outcome is worth the complexity: the problem of
vanishing and exploding gradients becomes less apparent. The standard techniques
of BPTT and RTRL can be applied in gated RNNs.

The first widely successful recurrent architecture to employ gating is the Long
Short-Term Memory (LSTM), introduced in [7]. We can understand the success
of the LSTM by referring to [6], particularly section 2, where the transition and
prediction equations are defined. We notice that the cell state at layer t , denoted
ct—one of the hidden states in the LSTM—is updated such that the norm of the
Jacobian of the evolution from layer t − 1 is close to 1. This adds stability to
the calculation of gradients, allowing longer-term dependencies to propagate farther
backwards through the network and forgoing the need for truncated BPTT.

We notice from [6] that the update and prediction steps for the LSTM are quite
complicated, requiring six equations in total. Thus, a simpler gating mechanism
requiring fewer parameters and update equations than the LSTM—now referred
to as the Gated Recurrent Unit (GRU) [2]—was introduced in [1]. The GRU state
update still maintains an additive component, as in the LSTM, but does not explicitly
contain a memory state. Introducing a GRU has been shown to be at least as effective
as the LSTM on certain tasks while converging faster [2]. Another interesting
comparison between LSTM and GRU is given in [8], where the authors demonstrate
empirically that the performance between the two is almost equal.

78 5 Recurrent Neural Networks

5.3.2 Bidirectional RNNs

When we work with sequences that are known in their entirety at training time
(as opposed to streams of data that become available as training proceeds), there
is nothing preventing us from analyzing the sequence in any order. The BRNN
[12] was developed to take advantage of this: it is a principled method to parse
sequences both forwards and backwards. This RNN structure maintains hidden
states proceeding both ways throughout the network, so that every layer in the
network has access to every input in the sequence. The forward and backward
hidden states do not interact, although we feed both into the prediction at each layer.
BRNNs have shown excellent utility when the entire input sequence is required for
a prediction; their applications are reviewed in [3].

5.3.3 Deep RNNs

In our development of RNNs above—in particular within vanilla RNNs—we had, at
each layer, a single state update equation and a single prediction equation. However,
in principle, there is nothing preventing us from making either of those a deep neural
network. This is the concept behind DRNNs, in which we parametrize the simple
f and g functions of Sect. 5.1 by DNNs [9]. We can justify the use of DRNNs
heuristically: adding more layers to a standard DNN can exponentially improve their
representational power, as discussed in Sect. 1.2.1, so we would expect the same
effect in RNNs. Empirically, this hypothesis has been confirmed, as DRNNs have
performed admirably in language modeling [9], speech recognition [4, 5], and video
captioning [14]. We could use our neural network framework from previous chapters
of this book to succinctly represent the DNNs within DRNNs; however, we leave
this for future work at this time.

5.4 Conclusion

In this chapter, we have developed a method to represent both a generic and a vanilla
RNN structure based on the vector-valued notation developed in previous chapters.
We have clearly and thoroughly derived the BPTT and RTRL methods for both cases
and provided pseudo-code for their implementation. Also, we have reviewed some
modern extensions to basic RNNs that have demonstrated usefulness in application.
By developing the mathematical results in this chapter, we hope to have provided a
standard for theoreticians to work with RNNs and their extensions.

References 79

References

1. K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, Y. Bengio,
Learning phrase representations using RNN encoder-decoder for statistical machine transla-
tion. arXiv:1406.1078 (2014, preprint)

2. J. Chung, C. Gulcehre, K. Cho, Y. Bengio, Empirical evaluation of gated recurrent neural
networks on sequence modeling. arXiv:1412.3555 (2014, preprint)

3. I. Goodfellow, Y. Bengio, A. Courville, Deep Learning (MIT Press, Cambridge, 2016). http://
www.deeplearningbook.org

4. A. Graves, N. Jaitly, A. Mohamed, Hybrid speech recognition with deep bidirectional LSTM,
in 2013 IEEE Workshop on Automatic Speech Recognition and Understanding (ASRU) (IEEE,
New York, 2013), pp. 273–278

5. A. Graves, A. Mohamed, G. Hinton, Speech recognition with deep recurrent neural networks,
in 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
(IEEE, New York, 2013), pp. 6645–6649

6. K. Greff, R. Srivastava, J. Koutník, B. Steunebrink, J. Schmidhuber, LSTM: a search space
odyssey. IEEE Trans. Neural Netw. Learn. Syst. 28(10), 2222–2232 (2017)

7. S. Hochreiter, J. Schmidhuber. Long short-term memory. Neural Comput. 9(8), 1735–1780
(1997)

8. R. Jozefowicz, W. Zaremba, I. Sutskever, An empirical exploration of recurrent network
architectures, in Proceedings of the 32nd International Conference on Machine Learning
(ICML-15) (2015), pp. 2342–2350

9. R. Pascanu, C. Gulcehre, K. Cho, Y. Bengio, How to construct deep recurrent neural networks.
arXiv:1312.6026 (2013, preprint)

10. D. Rumelhart, G. Hinton, R. Williams, Learning internal representations by error propagation.
Technical report, California University San Diego La Jolla Institute for Cognitive Science,
1985

11. J. Schmidhuber, A fixed size storage O(n3) time complexity learning algorithm for fully
recurrent continually running networks. Neural Comput. 4(2), 243–248 (1992)

12. M. Schuster, K. Paliwal, Bidirectional recurrent neural networks. IEEE Trans. Signal Process.
45(11), 2673–2681 (1997)

13. I. Sutskever, Training recurrent neural networks. University of Toronto, Toronto, Ontario,
Canada, 2013

14. S. Venugopalan, H. Xu, J. Donahue, M. Rohrbach, R. Mooney, K. Saenko, Translating videos
to natural language using deep recurrent neural networks. arXiv:1412.4729 (2014, preprint)

15. R. Williams, D. Zipser, A learning algorithm for continually running fully recurrent neural
networks. Neural Comput. 1(2), 270–280 (1989)

http://www.deeplearningbook.org
http://www.deeplearningbook.org

Chapter 6
Conclusion and Future Work

In this book, we began to address the lack of a standard mathematical framework for
representing neural networks. We first developed some useful mathematical notation
for vector-valued maps, and then used this to represent a generic deep neural
network. From this generic representation, we were able to implement the specific
examples of the Multilayer Perceptron (MLP), Convolutional Neural Network
(CNN), and Deep Autoencoder (DAE). Then, we extended this representation
further to encapsulate Recurrent Neural Networks (RNNs). We were able to,
throughout this work, derive gradient descent steps operating directly over the inner
product space in which the network’s parameters reside, allowing us to naturally
represent error backpropagation and loss function derivatives. The framework
developed in this work is generic and flexible enough to cover numerous further
extensions to the basic neural networks that we have not explicitly mentioned.

One important point to note is that this work is of a purely theoretical nature.
Most of the first-order derivatives calculated here for the specific network examples
are already implemented in automatic differentiation packages within Deep Neural
Network (DNN) software. However, those results are not useful to theoreticians
attempting to analyze the behaviour of neural networks—they are only useful to the
practitioners implementing these networks. We believe that this framework can help
influence future developments in applications of neural networks, but we have not
focused on that in this book.

We have developed a mathematical framework for neural networks over finite
dimensional inner product spaces with deterministic inputs and outputs. Future
theoretical work can modify the assumption of finite dimensionality and work with
infinite dimensional function spaces; we anticipate that representing DNNs with
infinite dimensional bases will increase their expressiveness. This extension would
not be too difficult to implement since we have established the generic network
framework over any finite dimensional inner product space. Another interesting
avenue of future research would be moving from vector spaces to generic manifold
representations of the input and parameters. This would provide us with a richer

© The Author(s) 2018
A. L. Caterini, D. E. Chang, Deep Neural Networks in a Mathematical Framework,
SpringerBriefs in Computer Science, https://doi.org/10.1007/978-3-319-75304-1_6

81

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75304-1_6&domain=pdf
https://doi.org/10.1007/978-3-319-75304-1_6

82 6 Conclusion and Future Work

and perhaps more efficient description of our data and parameters. Finally, we could
also add uncertainty and stochasticity into the framework that we have created here,
which would perhaps make inference in neural networks more tractable. These
suggestions are quite involved, but could be very useful for theoretical, and then
eventually application-based, research into neural networks.

There are also some more immediate directions for future work. One would be
to represent the RNNs using the higher-order loss function from Chap. 3, as we
did for the MLP, CNN, and DAE in earlier works [1, 2]. We could also generate
explicit representations for the RNN variants that we mentioned in Chap. 5. On the
applications side, it could be useful to implement a neural network that had first
undergone dimensionality reduction in our generic framework. In dimensionality
reduction methods, we often project the input down to a subspace of lower
dimension than the original input, and our framework can efficiently operate over
this subspace instead of the full input space.

In conclusion, we have created a generic and flexible mathematical framework
to represent deep neural networks. We believe that this framework can be useful
to theoreticians to build a deeper understanding of neural networks, which would
catalyze further developments on the applications side. We must improve our
understanding of how DNNs work, and this book is one attempt at expanding this
knowledge base.

References

1. A.L. Caterini, D.E. Chang, A geometric framework for convolutional neural networks.
arXiv:1608.04374 (2016, preprint)

2. A.L. Caterini, D.E. Chang, A novel representation of neural networks. arXiv:1610.01549 (2016,
preprint)

Glossary

activation function A nonlinear function applied to a vector in an elementwise
fashion.

adjoint The adjoint of a linear map L ∈ L(E1;E2), denoted L∗, is the linear map
satisfying 〈L∗ · e2, e1〉 = 〈e2, L · e1〉, for all e1 ∈ E1, e2 ∈ E2.

backpropagation The process of sending the error vector backward through a
neural network. Refer to Theorem 3.3 or Algorithm 3.2.1 for more detail.

bilinear map A function taking in two arguments which is linear in each.
direct product The direct product of two spaces E1 and E2 is the space E1 × E2,

with elements (e1, e2) for all e1 ∈ E1 and e2 ∈ E2.
elementwise first derivative The function obtained by replacing the elementwise

operation of an elementwise function with its first derivative.
elementwise function A function which applies a scalar function to each of its

inputs individually.
elementwise nonlinearity An elementwise function with a nonlinear elementwise

operation.
elementwise operation The scalar function associated with an elementwise

function.
elementwise second derivative The function obtained by replacing the element-

wise operation of an elementwise function with its second derivative.
feature map One of the matrices comprising the input to a generic layer of a

convolutional neural network.
filter A matrix that is convolved with grid-based data to produce a new grid.
forward propagation The process of sending the neural network input through the

layers of function compositions.
hyperparameter A fixed parameter in a neural network.
inner product space A vector space endowed with an inner product.
layerwise function The actions of one layer of a neural network, often represented

as f or fi .
linear functional A linear map from some vector space to the real numbers R.

© The Author(s) 2018
A. L. Caterini, D. E. Chang, Deep Neural Networks in a Mathematical Framework,
SpringerBriefs in Computer Science, https://doi.org/10.1007/978-3-319-75304-1

83

https://doi.org/10.1007/978-3-319-75304-1

84 Glossary

one-hot encoding A vector with one component set to 1 and the remaining
components set to zero.

parameter-dependent map A map f with a clear distinction between its state
variable and parameter.

self-adjoint A linear map L satisfying L∗ = L is self-adjoint.
softmax The function which returns an exponentially scaled version of its input.
stride The number of steps to take when performing a convolution.
tensor product The tensor product of two spaces E and E, with bases {ej }nj=1

and {ek}nk=1 respectively, is the space E ⊗ E, with a basis consisting of all pairs
(ej , ek) denoted ej ⊗ ek for all j ∈ [n] and k ∈ [n].

vanishing and exploding gradient A problem in deep neural networks character-
ized by gradients approaching either zero or infinity.

	Preface
	Contents
	Acronyms
	1 Introduction and Motivation
	1.1 Introduction to Neural Networks
	1.1.1 Brief History
	1.1.2 Tasks Where Neural Networks Succeed

	1.2 Theoretical Contributions to Neural Networks
	1.2.1 Universal Approximation Properties
	1.2.2 Vanishing and Exploding Gradients
	1.2.3 Wasserstein GAN

	1.3 Mathematical Representations
	1.4 Book Layout
	References

	2 Mathematical Preliminaries
	2.1 Linear Maps, Bilinear Maps, and Adjoints
	2.2 Derivatives
	2.2.1 First Derivatives
	2.2.2 Second Derivatives

	2.3 Parameter-Dependent Maps
	2.3.1 First Derivatives
	2.3.2 Higher-Order Derivatives

	2.4 Elementwise Functions
	2.4.1 Hadamard Product
	2.4.2 Derivatives of Elementwise Functions
	2.4.3 The Softmax and Elementwise Log Functions

	2.5 Conclusion
	References

	3 Generic Representation of Neural Networks
	3.1 Neural Network Formulation
	3.2 Loss Functions and Gradient Descent
	3.2.1 Regression
	3.2.2 Classification
	3.2.3 Backpropagation
	3.2.4 Gradient Descent Step Algorithm

	3.3 Higher-Order Loss Function
	3.3.1 Gradient Descent Step Algorithm

	3.4 Conclusion
	References

	4 Specific Network Descriptions
	4.1 Multilayer Perceptron
	4.1.1 Formulation
	4.1.2 Single-Layer Derivatives
	4.1.3 Loss Functions and Gradient Descent

	4.2 Convolutional Neural Networks
	4.2.1 Single Layer Formulation
	Cropping and Embedding Operators
	Convolution Operator
	Max-Pooling Operator
	The Layerwise Function

	4.2.2 Multiple Layers
	4.2.3 Single-Layer Derivatives
	4.2.4 Gradient Descent Step Algorithm

	4.3 Deep Auto-Encoder
	4.3.1 Weight Sharing
	4.3.2 Single-Layer Formulation
	4.3.3 Single-Layer Derivatives
	4.3.4 Loss Functions and Gradient Descent

	4.4 Conclusion
	References

	5 Recurrent Neural Networks
	5.1 Generic RNN Formulation
	5.1.1 Sequence Data
	5.1.2 Hidden States, Parameters, and Forward Propagation
	5.1.3 Prediction and Loss Functions
	5.1.4 Loss Function Gradients
	Prediction Parameters
	Real-Time Recurrent Learning
	Backpropagation Through Time

	5.2 Vanilla RNNs
	5.2.1 Formulation
	5.2.2 Single-Layer Derivatives
	5.2.3 Backpropagation Through Time
	5.2.4 Real-Time Recurrent Learning
	Evolution Equation
	Loss Function Derivatives
	Gradient Descent Step Algorithm

	5.3 RNN Variants
	5.3.1 Gated RNNs
	5.3.2 Bidirectional RNNs
	5.3.3 Deep RNNs

	5.4 Conclusion
	References

	6 Conclusion and Future Work
	References

	Glossary

