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Abstract

Bayesian inference is a statistical inference technique in which Bayes’ theorem is
used to update the probability distribution of a random variable using observa-
tions. Except for few simple cases, expression of such probability distributions
using compact analytical expressions is infeasible. Approximation methods are
required to express the a priori knowledge about a random variable in form of
prior distributions. Further approximations are needed to compute posterior dis-
tributions of the random variables using the observations. When the computa-
tional complexity of representation of such posteriors increases over time as in
mixture models, approximations are required to reduce the complexity of such
representations.

This thesis further extends existing approximation methods for Bayesian infer-
ence, and generalizes the existing approximation methods in three aspects namely;
prior selection, posterior evaluation given the observations and maintenance of

computation complexity.

Particularly, the maximum entropy properties of the first-order stable spline ker-
nel for identification of linear time-invariant stable and causal systems are shown.
Analytical approximations are used to express the prior knowledge about the
properties of the impulse response of a linear time-invariant stable and causal
system.

Variational Bayes (VB) method is used to compute an approximate posterior in
two inference problems. In the first problem, an approximate posterior for the
state smoothing problem for linear state-space models with unknown and time-
varying noise covariances is proposed. In the second problem, the VB method is
used for approximate inference in state-space models with skewed measurement
noise.

Moreover, a novel approximation method for Bayesian inference is proposed. The
proposed Bayesian inference technique is based on Taylor series approximation
of the logarithm of the likelihood function. The proposed approximation is de-
vised for the case where the prior distribution belongs to the exponential family
of distributions.

Finally, two contributions are dedicated to the mixture reduction (MR) prob-
lem. The first contribution, generalize the existing MR algorithms for Gaussian
mixtures to the exponential family of distributions and compares them in an ex-
tended target tracking scenario. The second contribution, proposes a new Gaus-
sian mixture reduction algorithm which minimizes the reverse Kullback-Leibler
divergence and has specific peak preserving properties.






Popularvetenskaplig sammanfattning

Bayes sats ar ett grundldggande verktyg inom statistik som kan anvandas for att
forfina forkunskapen om en variabel med hjalp av observationer. Forkunskapen
kallas prior och beskrivs matematiskt som en sannolikhetsfunktion for den okén-
da variabeln, och observationen beskrivs av en s.k. likelihood-funktion. Bayes
sats sdger att den normaliserade produkten av dessa beskriver den sa kallade
posteriorn, dvs. fordelningen for variabeln som skattningen ska baseras pa. Kérn-
problemet i avhandlingen dr att denna funktion i de flesta fall inte dr analytisk,
dvs kan skrivas som en matematiskt uttryck, och maste approximeras pa ett eller
annat satt. Ett antal effektiva metoder presenteras i detta arbete.

Bilsakerhet dr en illustrativ tillimpning som studeras av forfattaren. Antag att
mjukvaran i en kamera har upptackt en cykel framfor bilen den ar monterad i,
och att mjukvaran dessutom kan hitta de tva hjulens positioner i bilden. Hjulen
avbildas som ellipser i bilden, och man kan da med hjélp av ellipsernas form och
Bayes sats forfina informationen om cykelns position och dessutom skatta hur
cykeln kommer att dndra riktning, t.ex. om den haller pd att svanga ut framfor
bilen. Bayes sats kan ndmligen anvindas en gang till for att férutsaga var cykeln
kommer befinna sig ndr ndsta kamerabild tas. Dessa tva steg for att forutsdga
och skatta dr grundkomponenter i olinjéra filter, som ar ett fokusomrade i av-
handlingen. Konceptet att modellera cykeln inte bara som en punkt, utan som en
struktur med tva hjul, gar under benamningen utokat mal, och detta omrade har
varit en motivation for manga av resultaten i avhandlingen.

Néar man anvander Bayes sats finns det ett antal kombinationer av prior och li-
kelihood som faktiskt ger en analytisk posterior. En sddan prior som passar till
en viss likelihood kallas konjugerad prior. En metod som foreslds ar att approxi-
mera likelihooden sa att den prior man har blir konjugerad. Med hjalp av detta
trick blir posteriorn analytisk, och dven pa samma form som priorn. Det senare ar
viktigt ndr operationen ska upprepas manga ganger, som t.ex. i ett olinjart filter.

Ett annat exempel da en posterior har ett analytiskt uttryck dr ndr bade prior
och likelihood ar viktade summor av normalfordelningar. Sadana fordelningar
ar mycket flexibla och kan approximera vilken fordelning som helst godtyckligt
vél. Posteriorn blir da ocksa en viktad summa av normalférdelningar. Problemet
ar att den far allt fler komponenter varje gang Bayes sats anvands. Ett av avhand-
lingens bidrag tar fram konkreta algoritmer for att begridnsa antalet komponenter
genom smarta approximationer. Rent allmant kan posteriorn alltid approximeras
inom en given funktionsklass, och har studeras Kullback-Leibler som matt att op-
timera over. Detta anvands for att skatta impulssvar for dynamiska system. En
metod som anvands i flera bidrag ar Variational Bayes (VB). Har anviands VB till
att hitta en produktform av posteriorn 6ver tva delméangder av variabler som ska
skattas, vilket enligt VB kan goras stegvis med stora besparingar i beraknings-
komplexitet.
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Introduction

This chapter introduces the research area that is considered in this thesis and
summarizes the contributions that constitute this thesis. In Section 1.1, an intro-
duction to the approximate Bayesian inference is given. In Section 1.2, the main
contributions are summarized. In Section 1.3, the publications by the PhD candi-
date are listed. In Section 1.4 three applied research results produced by the PhD
candidate are presented. In Section 1.5, the outline of the thesis is given.

1.1 Approximate Bayesian Inference

Bayesian inference is a statistical inference technique in which Bayes’ theorem
is used to update the probability distribution of a random latent variable using
observations. This technique provides a mathematical tool for modeling systems
where uncertainties of the model, as well as the system, are reflected by the prob-
ability distributions. The probabilistic models which are constructed by proba-
bility distributions that describe our knowledge about the system are determined
using the rules of the probability calculus.

Probabilistic models describe the relation between the random latent vari-
ables, the deterministic parameters, and the measurements. Such relations are
specified by prior distributions of the latent variables p(x), and the likelihood
function p(y|x) which gives a probabilistic description of the measurements given
(some of) the latent variables. Using the probabilistic model and measurements
the exact posterior can be expressed in a functional form using the Bayes’ rule

p(x)p(ylx) '
[ px)p(ylx) dx

The prior knowledge about the latent variables and the parameters is ex-
pressed via prior distributions. Ideally, the prior distribution should express

p(xly) = (1.1)

3



4 1 Introduction

this prior knowledge about the latent variables without any extra assumptions.
The maximum entropy method (Jaynes, 1982) provides a tool to express the prior
knowledge in form of prior distributions without further assumptions. Describ-
ing the prior knowledge about a random variable using compact analytical ex-
pressions is not always feasible. In such cases approximation methods are re-
quired. One of the contributions in this thesis concerns such approximations.

Determination of the posterior distribution of a latent variable x given the
measurements (observed data) y is at the core of Bayesian inference using proba-
bilistic models. The exact posterior distribution can be analytical. A subclass of
cases where the posterior is analytical is when the posterior belongs to the same
family of distributions as the prior distribution. In such cases the prior distri-
bution is called a conjugate prior for the likelihood function. A well-known ex-
ample where analytical posterior is obtained using conjugate priors is when the
latent variable is a priori normal-distributed and the likelihood function given
the latent variable as its mean is again normal.

—— Example 1.1

Let x have a normal prior distribution with mean y and covariance ¥, i.e., x ~

N(x; 4, ). A measurement y with the likelihood function p(y[x) = N (y; Hx, R)
is in hand where H is a matrix with proper dimensions and R is a covariance
matrix. The posterior distribution of x can be obtained using the Bayes’ rule
given in (1.1);

p(x)p(ylx)
Ip(x (ylx) dx (1.2)
_ N E)N(y; Hx, R)
_IN(X; 1, X)N (y; Hx, R) dx

p(xly) =

(1.3)

The posterior distribution p(x|y) has an analytical solution and turns out to be the
normal distribution N (x; ¢/, ') whose parameters can be computed via closed
form expressions given here,

W =p+K(y-Hp), (1.4a)
Y =% - KHY, (1.4b)

where
K =YHHHT + R)7. (1.5)

The exact posterior distribution of a latent variable can not always be given a
compact analytical expression. In the following, three examples of such cases will
be given. In Example 1.2, a problem that is encountered in nonlinear filtering is
presented.
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—— Example 1.2

Let x have a normal prior distribution p(x) = M(x; #, £). A measurement y with
the likelihood function p(y|x) = N (y; h(x), R) is in hand where k(- ) is a vector val-
ued nonlinear function and R is a covariance matrix. The posterior distribution
of x can be expressed using the Bayes’ rule given in (1.1). However, the posterior
distribution does not necessarily have a compact analytical solution. A remedy
can be obtained by approximation of the likelihood function via linearization of
the function h(-) around the prior mean y as in

h(x) ~ h(p) + H(x - p) (1.6)
where

H £ Veh(x)|,-, - (1.7)

Using the approximate likelihood p(ylx) = AN (y; Hx, R), the approximate poste-
rior distribution can be computed using the analytical expressions given in Ex-
ample 1.1.

One of the contributions in this thesis concerns the problem and the solution
proposed in Example 1.2. In Example 1.3, a problem that is encountered in sim-
ulating a Markov chain with multi-modal transition density will be presented.

—— Example 1.3

Consider a Markov chain with transition density:
P(ps11xk) = WN (X115 Axg, Q) + (1 = w)N (xp415 Ay, Q), (1.8)

where 0 < w < 1, and factors A and A are two square matrices. We are inter-
ested in the marginal distribution of x(gg, where x; has the distribution p(x;) =
N (x1; p1, 21). The marginal distribution of x; can be obtained recursively by
integration as in

p(xy) = f p(xilxi 1 )p(xp_1) dxps. (1.9)

The first step of the recursion is computed here.

p(x;) = j (wN(xz;Axl, Q)+(1- w)N(xz;le,a))/\/’(xl;yl, ¥y)dx;  (1.10)
ZWN(Xz; A’/ll, Q + AElAT) + (1 — w)N(xz;Zy1,6+Z)leT) (111)

Although the marginal density of x, can be computed analytically, the complex-
ity of p(x,) has increased compared to p(x;) due to increase in the number of
Gaussian components needed to express p(x;). The number of Gaussian com-
ponents needed to express the marginal density of x; grows exponentially with
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DO

Figure 1.1: A probabilistic graphical model for stochastic dynamical system
with latent state x; and measurements yy.

respect to k and is 25~1. In order to maintain the computational complexity of
the marginal distributions of x; at a tractable level, the number of components
needs to be reduced via approximation of the true marginal density of x; with
another distribution with less components. A candidate solution for the problem
is minimizing a statistical distance between the true density of x; and its approx-

imation.
L ]

Two of the contributions in this thesis concern the problem described in Ex-
ample 1.3. Approximate Bayesian inference is particularly important when the
measurements appear sequentially in time as in the filtering task for a stochastic
dynamical system, whose probabilistic graphical model is presented in Figure 1.1.
In Example 1.4, the Bayesian filtering recursion is introduced and the need for ap-
proximations is highlighted. Three contributions in this thesis concern problems
of similar nature to Example 1.4.

—— Example 1.4 1
Consider a stochastic dynamical system represented by the following recursion

x; ~p(x1), (1.12a)
Yi ~p(yklxk), (1.12b)
Xk+1 ~P(Xpr1[X)- (1.12¢)

The Bayesian filtering recursion corresponds to computing the posterior distribu-
tions p(xkly1:x);

P(Xkly1:k-1)P(YilxXk)
1) = . 1.13
POy 1) =y ey dx (1.13)

The density p(xgly;.x—1) in the numerator of (1.13) which is called the predicted
density of x; and is obtained by integration as in

p(Xkly1:k-1) = J Pk Xk—1)p (Xp-1ly1:k-1) dXp—1. (1.14)

In such filtering problems, the posterior to the last processed measurement is
the prior distribution in the next time step. To be able to use the same inference al-
gorithm in a recursive manner, the posterior distribution at each time step should
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obtain the same form as the prior. When such a condition does not exist, approx-
imations can be used. A class of such approximations is called the variational ap-
proximations, where the posterior is assumed to have a specific functional form
(the same as the prior). Subsequently a statistical distance between the assumed
posterior and the true posterior is minimized to find the hyper-parameters of the
assumed (approximate) posterior.

Several methods for approximate inference over probabilistic models are pro-
posed in the literature such as variational Bayes (Jordan et al., 1999), expectation
propagation (Minka, 2001), integrated nested Laplace approximation (INLA) (Rue
et al., 2009), generalized linear models (GLMs) (Nelder and Wedderburn, 1972)
and, Monte-Carlo (MC) sampling methods (Hastings, 1970; Geman and Geman,
1984).

Variational Bayes (VB) and expectation propagation (EP) are two optimization-
based solutions to the approximate Bayesian inference (Wainwright and Jordan,
2008). In these two approaches Kullback-Leibler divergence (Cover and Thomas,
2006) between the true posterior distribution and an approximate posterior is
minimized. INLA is a technique to perform approximate Bayesian inference in
latent Gaussian models (Hennevogl et al., 2001) using the Laplace approxima-
tion. GLMs are an extension of ordinary linear regression when errors belong to
the exponential family.

Sampling methods such as Markov Chain Monte Carlo (MCMC) methods pro-
vide a general class of solutions to the approximate Bayesian inference problem.

In this thesis, the focus is on fast analytical approximations which are appli-
cable to large-scale inference problems. These approximations propose solutions
to the Bayesian inference problems where the vanilla versions are described in
Examples 1.2, 1.3 and 1.4. These analytical approximations either involve mini-
mization of a statistical divergence between the true distribution and its approxi-
mation or are based on expansion of a function with respect to a basis function.

In Section 1.2, the main contributions in this thesis are summarized. In Sec-
tion 1.5, the connection between the problems highlighted here in form of Exam-
ples 1.2, 1.3 and 1.4 and their corresponding contributions in this thesis will be
drawn.

1.2 Contributions

The contributions of this thesis address various aspects of Bayesian inference.
These contributions can be categorized in three groups:

1. Prior selection: The prior information about a stochastic process in a Gaus-
sian process regression problem can be encoded in the covariance function.
The maximum entropy properties of a covariance function for Gaussian pro-
cess regression referred to as the discrete-time first-order stable spline ker-
nel is proven.
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2. Determination of the posterior distribution for dynamical systems: Ap-
proximate posterior of two Bayesian inference problems are derived using
the variational Bayes technique. Furthermore, an approximation method
for general Bayesian inference problems using linearization of log-likelihood
function is proposed. These contributions in this category concern prob-
lems such as those highlighted in Examples 1.2 and 1.4.

3. Maintenance of computational complexity: The contributions in this cat-
egory concern with maintenance of computational complexity in problems
such as the one introduced in Example 1.3.

1.3 Publications

The following papers, listed in reverse chronological order, are published

T. Ardeshiri, U. Orguner, and F. Gustafsson. Bayesian inference via ap-
proximation of log-likelihood for priors in exponential family. ArXiv
e-prints, October 2015b. Submitted to Signal Processing, IEEE Trans-
actions on.

T. Ardeshiri, E. Ozkan, U. Orguner, and F. Gustafsson. Approximate
Bayesian smoothing with unknown process and measurement noise
covariances. To appear in Signal Processing Letters, IEEE, 2015.

T. Chen, T. Ardeshiri, F. P. Carli, A. Chiuso, L. Ljung, and G. Pillonetto.
Maximum entropy properties of discrete-time first-order stable spline
kernel. To appear in Automatica, 2015.

T. Ardeshiri, U. Orguner, and E. Ozkan. Gaussian Mixture Reduction
Using Reverse Kullback-Leibler Divergence. ArXiv e-prints, August
2015. To be Submitted to Signal Processing, IEEE Transactions on.

H. Nurminen, T. Ardeshiri, R. Piché, and F. Gustafsson. A NLOS-
robust TOA positioning filter based on a skew-t measurement noise
model. In 2015 International Conference on Indoor Positioning and
Indoor Navigation (IPIN), Banff, Alberta, Canada, October 2015b.

H. Nurminen, T. Ardeshiri, R. Piché, and F. Gustafsson. Robust infer-
ence for state-space models with skewed measurement noise. Signal
Processing Letters, IEEE, 22(11):1898-1902, Nov 2015a. ISSN 1070-
9908. doi: 10.1109/LSP.2015.2437456.

T. Ardeshiri, K. Granstrom, E. Ozkan, and U. Orguner. Greedy reduc-
tion algorithms for mixtures of exponential family. Signal Process-
ing Letters, IEEE, 22(6):676—680, June 2015a. ISSN 1070-9908. doi:
10.1109/LSP.2014.2367154.
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T. Ardeshiri and T. Chen. Maximum entropy property of discrete-
time stable spline kernel. In Acoustics, Speech and Signal Processing
(ICASSP), 2015 IEEE International Conference on, pages 3676-3680,
April 2015. doi: 10.1109/ICASSP.2015.7178657.

T. Ardeshiri and E. Ozkan. An adaptive PHD filter for tracking with
unknown sensor characteristics. In Information Fusion (FUSION),
2013 16th International Conference on, pages 1736-1743, July 2013.

T. Ardeshiri, U. Orguner, C. Lundquist, and T. Schon. On mixture
reduction for multiple target tracking. In Information Fusion (FU-
SION), 2012 15th International Conference on, pages 692-699, July
2012.

T. Ardeshiri, F. Larsson, F. Gustafsson, T. Schon, and M. Felsberg. Bicy-
cle tracking using ellipse extraction. In Information Fusion (FUSION),
2011 Proceedings of the 14th International Conference on, pages 1-8,
July 2011a.

T. Ardeshiri, M. Norrlof, J. Lofberg, and A. Hansson. Convex optimiza-
tion approach for time-optimal path tracking of robots with speed de-
pendent constraints. In Proceedings of the 18th IFAC World Congress,
Milan, Italy, pages 14648-14653, August 2011b.

T. Ardeshiri, S. Kharrazi, R. Thomson, and J. Bargman. Offset elim-
inative map matching algorithm for intersection active safety appli-
cations. In Intelligent Vehicles Symposium, 2006 IEEE, pages 82-88,
2006b. doi: 10.1109/1VS.2006.1689609.

T. Ardeshiri, S. Kharrazi, J. Sjoberg, J. Birgman, and L. M. Sensor fu-
sion for vehicle positioning in intersection active safety applications.
In International Symposium on Advanced Vehicle Control, 2006a.
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1.4 Applications

In this section, a summary of three applied research results produced by the PhD
candidate is presented.

1.4.1 Bicycle tracking using ellipse extraction

A new approach to track bicycles from imagery sensor data is proposed in
(Ardeshiri et al., 2011a). It is based on detecting ellipsoids in the image as in
Figures 1.2 and 1.3. These ellipses are treated these pair-wise using a dynamic
bicycle model illustrated in Figure 1.4. One important application area is in au-
tomotive collision avoidance systems, where no dedicated systems for bicyclists
yet exist and where very few theoretical studies have been published. Possible
conflicts can be predicted from the position and velocity state in the model, but
also from the steering wheel articulation and roll angle that indicate yaw changes
before the velocity vector changes. An algorithm is proposed in (Ardeshiri et al.,
2011a) which consists of an ellipsoid detection and estimation algorithm and a
particle filter. A simulation study of three critical single target scenarios is pre-
sented, and the algorithm is shown to produce excellent state estimates. An ex-
periment using a stationary camera and the particle filter for state estimation is
performed and has shown encouraging results.

Figure 1.2: The green ellipses indicate measurements obtained from the two
bike wheels. The ellipse parameters are later fed through a particle filter
framework in order to estimate the bicycle state.
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Figure 1.3: Ellipse extraction. Top left: Query image, Top right: Query im-
age after background subtraction. Bottom: Ellipses plotted with 0.9 and 1.1

times the estimated size, the actual estimated ellipses are halfway between
the lines.
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(a) side view (b) front view
x
z Pl
o
z
X
(c) top view (d) slope

Figure 1.4: (a) Illustration of the coordinate system and the bicycle param-
eters. The wheelbase L and the distance of center of gravity to the wheel
centers is denoted by || and I,. The y-axis goes through the center of grav-
ity and the x-axis goes through the wheel centers. (b) Illustration of the
inclination 6 of the bicycle. The inclination angle can be calculated using
Newton’s second law of motion. The gravitational force is denoted by mg
and the reaction force of the ground is denoted by N. (c) An extended bicy-
cle model is used as motion model where 1p and 6 are shown in this figure.
The orientation of the camera at the origin of the global coordinate system is
shown. (d) The slope of the bicycle’s track is denoted by «.
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1.4.2 Positioning using ultra wide-band data

The skew-t variational Bayes filter (STVBF) (Nurminen et al., 2015a) is applied to
indoor positioning with time-of-arrival (TOA) based distance measurements and
pedestrian dead reckoning (PDR) in (Nurminen et al., 2015b). The proposed fil-
ter accommodates large positive outliers caused by occasional non-line-of-sight
(NLOS) conditions by using a skew-t model of measurement errors. Real-data
tests using the fusion of inertial sensors based PDR and ultra-wideband based
TOA ranging show that the STVBF clearly outperforms the extended Kalman fil-
ter (EKF) in positioning accuracy with the computational complexity about three
times that of the EKF. A tracking performance of one of the test tracks is illus-
trated in Figure 1.5.

A UWB beacon
== reference track
- ——STVBF

EKF

Figure 1.5: Test track 1 consists of corridors and turns at corridor junctions.

1.4.3 Path tracking for robots

The task of generating time optimal trajectories for a six degrees of freedom in-
dustrial robot is discussed in (Ardeshiri et al., 2011b) and an existing convex
optimization formulation of the problem is extended to include new types of con-
straints. The new constraints are speed dependent and can be motivated from
physical modeling of the motors and the drive system. It is shown how the speed
dependent constraints should be added in order to keep the convexity of the over-
all problem. A method to, conservatively, approximate the linear speed depen-
dent constraints by a convex constraint is also proposed (see Figure 1.6). A nu-
merical example proves versatility of the extension proposed in (Ardeshiri et al.,
2011b).
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Figure 1.6: The torque at a joint of a robotic arm is plotted versus the square
of angular velocity of the same joint. The non-convex true feasible set is
approximated by a set of affine constraints. The true actuator’s constraints
is represented by the dashed line. The approximation of the feasible set by a
convex set is illustrated by the hatched area.

1.5 Thesis outline

The thesis is divided into two parts. In the rest of the first part, background
material for these contributions will be provided!'. In the second part of the
thesis, a compilation of six edited publications are presented.

1.5.1 Outline of Part |

In Chapter 2, the concepts of entropy, relative entropy, and maximum entropy
priors, and their relation to the exponential family are introduced. Also a short
introduction to variational Bayes method is given. The background material in
Chapter 2 are intended to lay the theoretical foundation for the Papers A, B, C, D
and E in the second part of this thesis.

In Chapter 3, a short introduction to the problem of identification of lin-
ear time-invariant, stable and causal systems using Gaussian process regression
methods is given. This Chapter is intended to give an introduction to the prob-
lem addressed in Paper A which is about approximation of the prior knowledge
for the purpose of devising a maximum entropy prior distribution.

IParts of the material presented in the first part of the thesis is already published by the author in
form of technical reports, conference papers and journal articles.
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In Chapter 4, an introduction to the mixture reduction problem introduced
in Example 1.3 is presented. The mixture reduction problem is addressed in the
second part of this thesis by Papers E and F. Concluding remarks are given in
Chapter 5.

1.5.2 Outline of Part Il

Part II of the thesis is a compilation of six edited contributions which are summa-
rized in the following.

Maximum entropy properties of discrete-time first-order stable spline kernel
Paper A

T. Chen, T. Ardeshiri, F. P. Carli, A. Chiuso, L. Ljung, and G. Pillonetto.
Maximum entropy properties of discrete-time first-order stable spline
kernel. To appear in Automatica, 2015.

presents the maximum entropy properties of the discrete-time first-order stable
spline kernel. The first order stable spline (SS-1) kernel (also known as the tuned-
correlated kernel) is used extensively in regularized system identification, where
the impulse response is modeled as a zero-mean Gaussian process whose covari-
ance function is given by well designed and tuned kernels. In particular, the
exact maximum entropy problem solved by the SS-1 kernel without Gaussian
and uniform sampling assumptions is formulated. Under general sampling as-
sumption, the special structure of the SS-1 kernel (e.g. its tridiagonal inverse and
factorization have closed form expression) is derived. Also a maximum entropy
covariance completion interpretation is given to it.

Approximate Bayesian smoothing with unknown process and measurement
noise covariances

Paper B

T. Ardeshiri, E. Ozkan, U. Orguner, and F. Gustafsson. Approximate
Bayesian smoothing with unknown process and measurement noise
covariances. To appear in Signal Processing Letters, IEEE, 2015.

presents an adaptive smoother for linear state-space models with unknown pro-
cess and measurement noise covariances. The proposed method utilizes the varia-
tional Bayes technique to perform approximate inference. The resulting smoother
is computationally efficient, easy to implement, and can be applied to high dimen-
sional linear systems. The performance of the algorithm is illustrated on a target
tracking example.
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Robust inference for state-space models with skewed measurement noise
Paper C

H. Nurminen, T. Ardeshiri, R. Piché, and F. Gustafsson. Robust infer-
ence for state-space models with skewed measurement noise. Signal
Processing Letters, IEEE, 22(11):1898-1902, Nov 2015a. ISSN 1070-
9908. doi: 10.1109/LSP.2015.2437456.

presents filtering and smoothing algorithms for linear discrete- time state-space
models with skewed and heavy-tailed measurement noise. The algorithms use a
variational Bayes approximation of the posterior distribution of models that have
normal prior and skew-t-distributed measurement noise. The proposed filter
and smoother are compared with conventional low-complexity alternatives in a
simulated pseudorange positioning scenario. In the simulations the proposed
methods achieve better accuracy than the alternative methods, the computational
complexity of the filter being roughly 5 to 10 times that of the Kalman filter.

Bayesian inference via approximation of log-likelihood for priors in
exponential family

Paper D

T. Ardeshiri, U. Orguner, and F. Gustafsson. Bayesian inference via ap-
proximation of log-likelihood for priors in exponential family. ArXiv
e-prints, October 2015b. Submitted to Signal Processing, IEEE Trans-
actions on.

presents a Bayesian inference technique based on Taylor series approximation
of the logarithm of the likelihood function. The proposed approximation is de-
vised for the case where the prior distribution belongs to the exponential family
of distribution and is continuous. The logarithm of the likelihood function is
linearized with respect to the sufficient statistic of the prior distribution in expo-
nential family such that the posterior obtains the same exponential family form
as the prior. Similarities between the proposed method and the extended Kalman
filter for nonlinear filtering are illustrated. Further, an extended target measur-
ement update for target models where the target extent is represented by a ran-
dom matrix having an inverse Wishart distribution is derived. The approximate
update covers the important case where the spread of measurement is due to the
target extent as well as the measurement noise in the sensor.
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Greedy reduction algorithms for mixtures of exponential family
Paper E

T. Ardeshiri, K. Granstrém, E. Ozkan, and U. Orguner. Greedy reduc-
tion algorithms for mixtures of exponential family. Signal Process-
ing Letters, IEEE, 22(6):676—680, June 2015a. ISSN 1070-9908. doi:
10.1109/LSP.2014.2367154.

presents a general framework for greedy reduction of mixture densities of expo-
nential family. The performances of the generalized algorithms are illustrated
both on an artificial example where randomly generated mixture densities are
reduced and on a target tracking scenario where the reduction is carried out in
the recursion of a Gaussian inverse Wishart probability hypothesis density (PHD)
filter.

Gaussian mixture reduction using reverse Kullback-Leibler divergence
Paper F

T. Ardeshiri, U. Orguner, and E. Ozkan. Gaussian Mixture Reduction
Using Reverse Kullback-Leibler Divergence. ArXiv e-prints, August
2015. To be Submitted to Signal Processing, IEEE Transactions on.

presents a greedy mixture reduction algorithm which is capable of pruning mix-
ture components as well as merging them based on the Kullback-Leibler diver-
gence (KLD). The algorithm is distinct from the well-known Runnalls’ KLD based
method since it is not restricted to merging operations. The capability of pruning
(in addition to merging) gives the algorithm the ability of preserving the peaks
of the original mixture during the reduction. Analytical approximations are de-
rived to circumvent the computational intractability of the KLD which results in
a computationally efficient method. The proposed algorithm is compared with
Runnalls’ and Williams” methods in two numerical examples, using both simu-
lated and real world data. The results indicate that the performance and compu-
tational complexity of the proposed approach make it an efficient alternative to
existing mixture reduction methods.






Entropy, Exponential Family, and
Variational Bayes

Analytical approximations proposed in the second part of this thesis build upon
the existing literature on maximum entropy priors, exponential family of distri-
butions and variational Bayes. In this chapter some preliminary definitions and
results relating to these contributions will be given. In Section 2.1, entropy and
the relative entropy will be defined. Furthermore, maximum entropy distribu-
tions will be derived. The background material in section 2.1 will lay the founda-
tions for Paper A in the second part of the thesis. Also the relationship between
the maximum entropy priors and the exponential family will be explained. In
Section 2.2, the exponential family of distributions and some of their properties
will be given. These background material will be used in Papers E and D which
are about approximate inference techniques relating to exponential family of dis-
tributions. In Section 2.3 the variational Bayes (VB) method is described. The VB
method is used to derive approximate posteriors in Papers B and C.

2.1 Entropy

Entropy is a measure of the uncertainty of a random variable. In this thesis, only
continuous random variables are considered. Consequently, only the aspects of
the information theory which are related to continuous random variables will be
covered. The definitions of the differential entropy and relative entropy will be
given in the following.

Definition 2.1. For a distribution with its support on S with density p(-), the
differential entropy is defined by (Cover and Thomas, 2012)

Hi(p) = —fp(x) log p(x) dx. (2.1)
S

19
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—— Example 2.2 |
For standard normal distribution in R” where p(x) = (27)"/? exp{— x2/2}

and log p(x) = —% log(2m) - % i x2 the following holds.

]11

H(p) = —E[log p(x)] = n/21og(2m) + n/2
= n/2log(2me),

where e is the Euler number.
L ]

Definition 2.3. The relative entropy or the Kullback-Leibler divergence between

two PDFs is defined by
(x)

Dkr(pllg) = E logp—
p(x)

TR (2.2)

[

2.1.1 Maximum entropy prior distributions

By maximizing the differential entropy of a distribution subject to constraints im-
posed by prior knowledge, the probability distribution which encompasses the
least assumptions about the data can be obtained. In the following, the maxi-
mum entropy distribution subject to some constraints expressed by equality con-
straints on expectation of some functions will be derived.

—— Example 2.4 |
Maximize the entropy H(p) over all probability densities p(-) satisfying

1. p(x) > 0, with equality outside the support set S,
2. [ipx)dx =1,
3f5 x)dx=a;,for1 <i<m.

The solutlon to the maximum entropy problem can be found using calculus
(Cover and Thomas, 2012); The Lagrangian for the problem is given by

I(p)=—jp10gp+iofp+i%fTip. (2.3)
i=1

Since the entropy is a concave function defined over a convex set we can compute
the functional derivative and equate it to zero to obtain

d]
T ~log p(x 1+/\0+Z/\T (2.4)

Hence,

p(x) =exp [—1 + Ao+ Z/\iTi(X)]- (2.5)

i=1
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The result of the example above will be proven using the information inequal-
ity in the following theorem.

Theorem 2.5. Let p*(x) = exp (—1 + Ao+ 2 /\iTi(x)), x € S, where Ag, Ay, ..., A,y
are chosen so that p* satisfies (Cover and Thomas, 2012, Theorem 12.1.1)

1. p(x) > 0, with equality outside the support set S,
2. f[px)dx =1,
3. fs x)dx=a;, forl <i<m.

Then, p* uniquely maximizes H(p) over all probability densities p satisfying the
constraints.

Proof: Proof is obtained using the information inequality. Let g satisfy the con-
straints. Then

H(g) = —fglng = —J-gln %p* = —DKL(gIIp*)—fglnp*

S S S
S—J-glnp = f [ 1+)\0+Z)\T]
Sf [1+)\0+Z/\T] jplnp = H(p")

Note that the equality holds iff Dg;(g|[p*) = 0 for all x. Therefore, g = p* except
for a set of measure 0. O

—— Example 2.6
The maximum entropy distribution on the support S = (—co, o0) satisfying the
constraint E[x] = p, E[x?] = 02 is p(x) = N(x; p, 02).

—— Example 2.7
The maximum entropy distribution on the support S = [0, +co) satisfying the
constraint E[x] = A, is p(x) = Exp(x; A71).

—— Example 2.8

The maximum entropy distribution on the support S = [4, b] satisfying no other

constraint than integrability, is p(x) = U(x; a, b).
L
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The differential entropy for continuous random variables has some weaknesses
compared to the discrete random variables which are listed here.

Remark 2.9. Differential entropy differs from the entropy of finely quantized version of
the continuous random variable (the Shannon entropy) by the logarithm of the quantiza-
tion resolution which is infinite in the limit. (Cover and Thomas, 2012, Theorem 8.3.1).

Remark 2.10. Differential entropy is not scale invariant on R”. That is, for a vector-valued

random variable X € R" and a non-singular matrix A € R"™*" (Cover and Thomas, 2012,
page 254)

H(AX) = H(X) + log|det(A)|. (2.6)

- 1

Remark 2.11. Differential entropy can be negative. Hence, the well known relation be-
tween the information content of a distribution and the Shannon entropy does not hold
for the differential entropy.

As we showed in theorem 2.5, the maximum entropy distribution subject to
expectation constraints given in the theorem obtains the form
exp (—1 +Ao+ X AT (x)) In the following section the exponential family of
distributions will be introduced. The members of this family arise naturally as
the solution to the problem of finding maximum entropy distribution subject to
the expectation constraint on their sufficient statistic T(x).

2.2 Exponential Family

The exponential family of distributions (Wainwright and Jordan, 2008) includes
many common distributions such as Gaussian, beta, Dirichlet, gamma and Wishart.
The exponential family in its natural form can be represented by its natural pa-
rameters 177, sufficient statistic T(x), Log-partition function A(7) and base measure
h(x) as in

q(x;17) = h(x) exp(n - T(x) — A(1)), (2.7)

where the natural parameter 7 belongs to the natural parameter space () = {5 €
R™A(y) < +oo}. Here a- b denotes the inner product of 2 and b. In Table 2.1 the
sufficient statistic for some continuous members of the exponential family are
given.

Definition 2.12. The set corresponding to all mean values for the sufficient statis-
tics
M={pe RmIBP,I}E;Z[T(X)] = (2.8)

is called the mean parameter space (Wainwright and Jordan, 2008).

Definition 2.13. In a regular family of exponential family the domain Q is an
open set (Wainwright and Jordan, 2008).

Definition 2.14. In minimal representation of an exponential family a unique
parameter vector is associated with each distribution (Wainwright and Jordan,

2008).
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Table 2.1: Some continuous exponential family distributions and their suffi-
cient statistic are listed.

Continuous Exp. Family Distribution T(-)
Exponential distribution X
Normal distribution with known variance o2 x/o
Normal distribution (x, xxT)
Pareto distribution with known minimum x,, log x
Weibull distribution with known shape k xk
Chi-squared distribution log x
Dirichlet distribution (logxy,---,logxy)
Laplace distribution with known mean p Ix —
Inverse Gaussian distribution (x, 1/x)
Scaled inverse Chi-squared distribution (logx, 1/x)
Beta distribution (logx,log(1 —x))
Lognormal distribution (log x, (log x)?)
Gamma distribution (log x, x)
Inverse gamma distribution (logx, 1/x)
Gaussian Gamma distribution (log T, 7, 1%, sz)
Wishart distribution (log |X], X)
Inverse Wishart distribution (log|X], X7 1)

The formulas for representation of some probability distribution functions in
the exponential family form are given in Appendix A.

2.3 Variational Bayes

Variational Bayes (VB) method is used to find an approximate solution to infer-
ence problems when an exact solution is not analytically tractable. Consider a
Bayesian model in which prior distributions are assigned to all parameters and
latent variables. We will denote all these parameters and latent variables by x
where x £ {x1,X,,--+,X,}. Now, consider the measurement vector y along with
the joint posterior distribution p(x,y).

When there is no analytical solution for the posterior p(x|y) we can look for
an approximate analytical solution using the following factorized variational ap-
proximation.

(2.9)
(2.10)

p(xly) = g(x)
£ 91(x1)92(x2) - - 4u(Xp),
where the densities g1 (x1), 92(x2), - - -, 4,,(x,;) are the approximate posterior densi-

ties for x1, x5, - - -, X, respectively. Technique of VB (Bishop, 2006, Ch. 10),(Tzikas
et al., 2008) chooses the estimates 4 (x1), §2(x2), - - -, §,(x;,) for the factors in (2.10)
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using the following optimization problem

4(x) = arg(m)in Dgr(q()|lp(xly)). (2.11)
q X

The optimal solution for the optimization problem satisfies the following set
of equations.

log §;(x;) = E[log p(x,y)] + const., 1 <i<n (2.12)
—i

where the term const. is constant with respect to the variables x; and the sub-
script —i under the expectation operator means that the expectation is taken with
respect to factors other than g;(x;).

The solution to (2.12) can be obtained via fixed-point iterations where only
one factor in (2.10) is updated and all the other factors are fixed to their last esti-
mated values (Bishop, 2006, Ch. 10). The iterations converge to a local optima
of (2.11) (Bishop, 2006, Ch. 10), (Wainwright and Jordan, 2008, Ch. 3).

The posterior in (2.9) can be the smoothing distribution of the states and
model parameters which my not be analytical. In Papers B and C, it is shown
that the VB technique can be used to find an approximate posterior.



System ldentification

This chapter concerns a maximum entropy prior for a specific approximate Bay-
esian inference problem. Particularly, the prior information about the impulse re-
sponse of a linear time-invariant (LTI) stable and causal system will be described.
The background material presented in this chapter lays the foundation for the
contribution in Paper A in the second part of this thesis where the prior infor-
mation is approximated to construct a maximum entropy kernel for Gaussian
process regression. Parts of the back ground material is published in (Ardeshiri
and Chen, 2015).

3.1 Impulse Response Identification

System identification is about how to construct mathematical models based on
observed data, see e.g., (Ljung, 1999). For linear time-invariant (LTI) and causal
systems, the identification problem can be stated as follows. Consider

y(ti):f*u(ti)"’-v(ti)’ i:O, lr"'rN (31)

where t;,i = 0,1,---, N are the time instants at which the measured input u(t)
and output y(t) are collected, v(t) is the disturbance, f(t) is the impulse response
with t € R* £ [0, 0) for continuous-time systems and t = t;, i = 0,1,--- for
discrete-time systems, and f * u(t;) is the convolution of f(-) and u(-) evaluated
at t = t;. The goal is to estimate f(t) as good as possible.

Recently, there have been increasing interests in system identification com-
munity to study system identification problems with machine learning methods,
see e.g., (Ljung et al., 2011), (Pillonetto et al., 2014). An emerging trend among
others is to apply Gaussian process regression methods for LTI stable and causal
system identification problems, see (Pillonetto and Nicolao, 2010) and its follow
up papers (Pillonetto et al., 2011), (Chen et al., 2012a), (Chen et al., 2014). Its

25
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idea is to model the impulse response f(t) with a suitably defined Gaussian pro-
cess which is characterized by

f(t) ~ GP(m(t), k(t, 5)), (3.2)

where m(t) is the mean function and is often set to be zero, and k(¢, s) is the covari-
ance function, also called the kernel function in machine learning and statistics,
see e.g., (Rasmussen and Williams, 2006).

The kernel k(t, s) is parametrized by a hyper-parameter  and further written
as k(t,s; B). The key issue is to design a suitable parametrization of k(t,s; §), or
in other words, the structure of k(t, s; 8), because it reflects our prior knowledge
about the system to be identified. Several kernel structures have been proposed
in the literature, e.g., the stable spline (SS) kernel in (Pillonetto and Nicolao,
2010) and the diagonal and correlated (DC) kernel in (Chen et al., 2012a).

Interestingly, (Pillonetto and Nicolao, 2011) shows based on a result in (Nico-
lao et al., 1998) that for continuous-time systems, the continuous-time first-order
SS kernel (also derived by deterministic arguments in (Chen et al., 2012a) and
called Tuned Correlated (TC) kernel):

k(t,s) = minfe P!, e P}, t,seR* (3.3)

has a certain maximum entropy property. In Example 3.1 an the impulse re-
sponse identification problem will be further illustrated.

—— Example 3.1
Consider the LTI system and the simulated input-output data presented in Fig-
ure 3.1.

Input and Output data

0 50 100 150 200 250

r\5
=0 |

0 50 100 150 200 250
Time (seconds)

Figure 3.1: Input (black) and output (green) data versus time.

The impulse response f can be computed using the input-output data and,
the prior knowledge about the form of the impulse response expressed by the
kernel function,

k(t,s) = min{e*ﬁt, e*ﬁs}, t,s=1t;,i=0,1,--- (3.4)
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where f(t) ~ GP(0, k(t,s)). The estimated impulse response is presented in Fig-
ure 3.2.

Estimated Impulse Response
0.6 ‘ ‘ ‘

0.4- 1

o
9. g% 000
eq00i0009%000iiss.

03 20 40 60 80 100 120
Time (seconds)

Figure 3.2: The estimated impulse response (dark blue) along with one stan-
dard deviation band (cyan).

In the following some characteristics of the impulse response of LTI stable and
causal systems will be given in two separate sections one for the continuous-time
case and another for the discrete-time case.

3.2 Continuous-time impulse response

The prior knowledge about the continuous-time impulse response of a stable and
causal LTI system are

1. bounded input bounded output (BIBO) stability of the system and,
2. smoothness of the impulse response.

For continuous-time impulse response the BIBO stability is assured when the
impulse response be absolutely integrable, i.e., its L!-norm exists;

o0

f ) dE = 1fly < oo (3.5)

—00

The smoothness constraint on the continuous-time impulse responses can be
addressed as in (Nicolao et al., 1998, Theorem 1) where the authors suggest that
the smoothness of a signal can be imposed by assuming that the variances of its
derivatives are finite.

df
VIi——|=1 A< 3.6
] 59

The impulse response of a continuous-time LTI system and its L'-norm is

illustrated in Figure 3.3.
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Impulse Response
6 ‘

Amplitude
N

0 5 10 15 20
Time (seconds)

Figure 3.3: The impulse response of a continuous-time LTI stable system.
The shaded area under the impulse response should be finite.

Some definitions which would be needed to solve the maximum entropy ker-
nel estimation problem for continuous-time stochastic processes are given in the
following.

Definition 3.2. (L, differentiation) (Astrém, 1970, page 37) A second order stochas-
tic process f is said to be differentiable in the mean square at ¢ if the limit

t - f(t
lim flt+s) - f(1) _ £(1) (3.7)
5s—0 S
exists in the sense of mean square convergence, that is, if
2
t - f(t

li%E[M _ f’(t)] = 0. (3.8)
S—

Recall that the derivative variances can be expressed via spectral measure by

Tt

E[f" (7] = 2i f 0" (w) dw (3.9)

where, mth square mean derivative of f exists iff the integral in the right hand
side of (3.9) is finite (Lifshits, 2014, page 107).

Definition 3.3. The differential entropy rate of a real-valued continuous-time
stochastic process f( ) is defined in (Nicolao et al., 1998) as

T

H(f) = 4i Jlog(S(w)) dw. (3.10)
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3.3 Discrete-time impulse response

The prior knowledge about the discrete-time impulse response of a stable and
causal LTI system are

1. bounded input bounded output (BIBO) stability of the system and,

2. smoothness of the impulse response.

BIBO stability is assured when the impulse response is absolutely summable,
i.e., its ¢! norm exists;

Y Ul =11flly < oo, (3.11)

n=-o0o
The smoothness constraint on the discrete-time impulse responses can be im-
posed by assuming that the variances of its finite differences are proportional to
the time increment over which the finite difference is computed;

VIf(tiv1) = f(t)] = At — 1), 00> A>0. (3.12)
Some definitions which would be needed to solve the maximum entropy ker-

nel estimation problem for discrete-time stochastic processes are given in the
following.

Definition 3.4. (Differential entropy rate of a sequence) Let {X(#n)} be a sequence.
Its differential entropy rate is defined as (Cover and Thomas, 2012)

— 1

H(X) 2 lim —H(p(X(1),..., X(n))), (3.13)

n—oo 1

when the limit exists.

Note that stationarity or even wide-sense stationarity are not required for def-
inition 3.4 to hold.

Proposition 3.5. Among all sequences with given covariance, Gaussian one has
the maximal differential entropy rate (Cover and Thomas, 2012).

—— Example 3.6 1

For independent and identically distributed (iid) standard Gaussian sequence we
have

H(X) = log V2me. (3.14)

Let X(-) be a centered (zero-mean) discrete-time stationary sequence with au-
tocorrelation R(-) where, R(n) = E[X(n)X(0)]. Also, let S(-) denote the spectral
density of X(-) on [-7, 7]. The following hold for a spectral representation S(-)
(Papoulis and Pillai, 2002, page 421),

R(n) = ifei"wsm) do. (3.15)
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—— Example 3.7 |

X(+)is the iid standard sequence with covariance function

1 =
Rm =1t =0 (3.16)
0 otherwise

iff S(w) = 1 for w € [-7, 7).
L |

Theorem 3.8. If a stationary sequence is Gaussian with spectral density S(w),
then (Papoulis and Pillai, 2002, page 663)

H(X) = log V2me + ﬁjlog S(w) dw. (3.17)

=TT

—— Example 3.9 .

Here, we will verify this theorem for iid Gaussian sequence with variance o?.

From (3.14) we obtain

H(X) = log V2me + log o. (3.18)
From (3.17) we can obtain the same result as in

T
— 1
H(X) =log V2me + i J-log o’ du
=T

= log V2me + log o. (3.19)

3.4 Maximum Entropy Kernel

In (Pillonetto and Nicolao, 2011), the maximum differential entropy rate continuous-
time stochastic process subject to constraints on smoothness and bounded-input
bounded-output (BIBO) stability is sought. In (Pillonetto and Nicolao, 2011) the
Definition 3.3 for the differential entropy rate of a stationary continuous-time
Gaussian process g(t) with power spectrum S(w) is adopted from (Nicolao et al.,
1998). Furthermore, the following proposition is adopted from (Nicolao et al.,
1998).

Proposition 3.10. (Nicolao et al., 1998, Theroem 1) Let g(t) be a zero-mean ban-
dlimited stationary Gaussian process with power spectrum S(w) = 0 for |w| > B.
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Given finite /\i, k =0,1,.---,m, assume that there exist real numbers aj, j=
0,1,---,m such that

f - dow = 212, k=0,1,---,m. (3.20)
Z] o djw

Under this assumption, if there exists S(w) that maximizes H(g) in

+o0

H(g) = ;Ijlog( (@) do. (3.21)

—00

subject to constraints V[ )] = /\i, k=0,1,---,m, then the spectrum is given

dtk
by S(w) = W In particular, if there is no constraints on the first m — 1
j=

order derivatives, then the spectrum becomes S(w) = m

Deriving the maximum entropy process in continuous-time in (Nicolao et al.,
1998) and (Pillonetto and Nicolao, 2011) is quite involved, due to the infinite-
dimensional nature of of the problem and absence of a well-defined differential
entropy rate for a generic continuous-time stochastic process.

In Paper A, we focus on discrete-time impulse responses (stochastic processes),
and provide a simple and self-contained proof to show the maximum entropy
properties of the discrete-time first-order SS kernel (3.4). The advantages of work-
ing in discrete-time domain include

1. The differential entropy rate is well-defined for discrete-time stochastic pro-
cess.

2. Given a stochastic process, its finite difference process can be well-defined
in discrete-time domain.

3. Itis possible to show what maximum entropy property a zero-mean discrete-
time Gaussian process with covariance function (3.4) has.






Mixture Reduction

The background material presented in this chapter introduces the mixture reduc-
tion problem and presents the background material which are related to papers E
and F. Some of the material presented in this chapter are published by the PhD
candidate in (Ardeshiri et al., 2012) and (Ardeshiri et al., 2014).

4.1 Mixture Reduction

A common problem encountered in Bayesian inference and particularly tracking
is mixture reduction (MR). Examples of such circumstances are multi-hypotheses
tracking (MHT)(Blackman and Popoli, 1999), Gaussian sum filter(Alspach and
Sorenson, 1972), multiple model filtering (Blackman and Popoli, 1999), Gaussian
mixture probability hypothesis density (GM-PHD) filter (Vo and Ma, 2006). In
these algorithms the information about the state of a random variable is modeled
as a mixture density.

A mixture density is a probability density which is a convex combination of
(more basic) component probability densities, see e.g. (Bishop, 2006). A normal-
ized mixture with N components is defined as

N
p(x)=) wlqlxn"), (4.1)
I=1

where the terms w' are positive weights summing to unity, and 5’ are the pa-

rameters of the component density g(x;#!). When the component density is a
Gaussian density the mixture density is referred to as Gaussian mixture (GM).
The mixture reduction problem (MRP) is to find an approximation of the orig-
inal mixture density by a mixture density with fewer components. To be able
to implement these algorithms for real time applications a mixture reduction

33
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step is necessary. The aim of the reduction algorithm is to reduce the compu-
tational complexity into a predefined budget while keeping the inevitable error
introduced by the approximation as small as possible.

4.2 Mixture Reduction for Target Tracking

This section concerns with the mixture reduction algorithms in multiple target
tracking. The current mixture reduction convention in multiple target tracking
(MTT) is to use exactly the same algorithm for reducing the computational load
to a feasible level as for extracting the state estimates. In general, the mixture
reduction for the state extraction should be much more aggressive than that for
computational feasibility. For this reason, the number of components in the mix-
tures have to be reduced much more than what the computational resources ac-
tually allow for. This can result in coarser approximations than what is actually
necessary. It is proposed in (Ardeshiri et al., 2012) to split the reduction step into
two separate procedures according to:

* Reduction in the loop is a reduction step which must be performed at each
point in time for computational feasibility of the overall target tracking
framework. The objective for this algorithm is to reduce the number of
components and to minimize the information loss.

* Reduction for state extraction aims at reducing the number of components
so that the remaining components can be considered as state estimates in
the target tracking framework.

This separation makes it possible to tailor these two algorithms to fulfill their in-
dividual objectives, which reduces the unnecessary approximations in the overall
algorithm. A block diagram of the conventional mixture reduction method on a
high level is shown in Figure 4.1.

Prediction
Mixture State
Update
p Reduction Extraction

Figure 4.1: The standard flowchart of the MTT algorithms has only one mix-
ture reduction block.

In the proposed implementation of MR for MTT in (Ardeshiri et al., 2012),
the reduction algorithm is split into two subroutines each of which is tailored for
its own purpose, see Figure 4.2. The first reduction algorithm, denoted reduction
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in the loop, is designed to reduce the computational cost of the algorithm to the
computational budget between the updates. In this reduction step, the number
of components should be reduced to a number that is tractable by the available
computational budget and minimal loss of information is in focus. The second
reduction algorithm, denoted reduction for extraction, is designed to reduce the
mixture to as many components as the number of targets. In this part of the al-
gorithm, application dependent specifications and heuristics can enter into the
picture. If the purpose of state extraction is only visualization, the second reduc-
tion does not have to be performed at the same frequency as the measurements
are received and can be made less frequent. The advantages of the proposed al-
gorithm are that the unnecessary loss of information in the reduction in the loop
step will only be due to the finite computational budget rather than closeness of
the components. Furthermore, some computational cost can be discounted if the
state extraction does not have to be performed for every measurement update
step.

Prediction
l Mixture
Reduction
Update —— for Com-
putational
ﬁ— Feasibility
Mixture
Reduction
for State
Extraction
State
Extraction

Figure 4.2: The proposed block diagram of the MTT algorithm with two
mixture reduction blocks; one tailored to keep the computational complexity
within the computational budget and one tailored for state extraction.

Another important advantage of the proposed algorithm in (Ardeshiri et al.,
2012) is that the number of final components in both of the reduction algorithms
is known since the computational budget is predefined in the reduction in the
loop algorithm. Furthermore, the number of target states can be predetermined
by summarizing the weights in e.g., a GM-PHD filter and utilized in the reduc-
tion for extraction algorithm. The clustering or optimization method selected
for reduction can be executed more efficiently compared to a scenario where the
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number of components is left to be decided by the algorithm itself.

4.3 Greedy mixture reduction

Ideally, the MRP is formulated as a nonlinear optimization problem where a diver-
gence measure between a mixture and its approximation with a desired number
of components is selected. The optimization problem is then solved by numer-
ical solvers when the problem is not analytically tractable. The numerical opti-
mization based approaches can be computationally quite expensive, especially
for high dimensional data and they generally suffer from the problem of local
optima. Hence, a common alternative solution to the MRP has been the greedy it-
erative approach. When the computational budget permits a numerical solution,
the greedy approaches are used to initialize the global optimization approach
(Williams and Maybeck, 2006).

In the greedy approach, the number of components in the mixture is reduced
one at a time. By applying the same procedure over and over, a desired number
of components can be reached. In order to reduce the number of components
by one, two types of operations are considered, namely, pruning one component
and merging of two components. These two operations will be given an official
definition in the following.

Pruning which is the simplest operation for reducing the number of compo-
nents in a mixture density is to remove one (or more) components of a mixture
and rescaling the remaining components such that it integrates to unity. For ex-
ample pruning component J from (4.1) results in the mixture density

N
P =0-w)" ) wlhny). (4.2)
1=1,1%]

The merging operation in a MRA approximates a subset of components in a
mixture density with a single component of the same component density type. In
general, an optimization problem minimizing the KLD between the normalized
subset of the mixture and the single component is used for this purpose leading
to a moment matching operation. More formally, approximation of a fraction
of the mixture density (4.1) consisting of two components I and J; w!q(x; ') +
w/q(x; 1)) by a single weighted component (w! + w/)q(x; /) is referred to as
merging components I and ], where

wlg(x; I)+w] x; 1)
q(x; 1 q( ’7)||q(x;q”).

IJ' = arg min D
1 8 KL ol +wl

When the component densities are Gaussian densities with mean p and covari-
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ance X the parameters of the approximate density are given by

1
IJ _ 1,1 ]
7 ——w“rwl(wy +w ), (4.3a)
K
I — w yK K _ 0y, K — ,IT) 4.3b
Kg{”wuw,( + (= gk = ) (4.3b)

There are two different types of greedy approaches in the literature, local and
global approaches. The local approaches consider only the merging operation.
The (two) components to be merged are selected among all possible pairs of com-
ponents based on a divergence measure between the individual components and
the divergence between the original mixture and its approximation is not (ex-
plicitly) taken into account. Well-known examples of local approaches are given
in (Salmond, 1990; Granstrom and Orguner, 2012b).

In the global approach, each of the pruning or merging possibilities are consid-
ered to be a hypothesis. The decisions are then made by choosing the candidate
hypothesis that minimizes a divergence measure involving the original mixture
and the corresponding reduced mixtures (all of which has one less component).

In the global approach to mixture reduction, pruning or merging operations
applicable on the original mixture p(x) are considered to be hypotheses denoted
by H. The resulting mixtures that would be obtained if the I*" component is
pruned, or if the I'h and Jth components are merged, are denoted by p(x|Ho;)
and p(x|Hjj), respectively. The single component obtained by merging the It
and J'" components is denoted by gq(x, /). If p(x) has K components there are K
pruning and K(K —1)/2 merging hypotheses. In order to decide on the candidate
pruning and merging operations, all corresponding mixtures p(x|Ho;), p(x|H ;)
and their associated divergence measure are calculated. The hypothesis which
results in the smallest divergence measure, is most similar mixture to the original
mixture, is selected.

More particularly, at the k" stage of reducing mixture density of equation (4.1),
nr = N — k + 1 components are left and there are %nk x (ny — 1) possible merging
decisions and nj, possible pruning decisions to choose from. Let the reduced den-
sity at the k'” stage be denoted by py(x). We have a multiple hypotheses decision
problem at hand where the hypotheses are formulated according to

Hor = x ~ pr(x|Hor),
Hoz = x ~ pr(x|Hoy),

Pruning Hypotheses

Hon, : X ~ pr(xHon,),

Hiz : x ~ pr(x|Hy2),
Hiz : x ~ pr(x|Hi3),

Merging Hypotheses

H(nk—l)nk X~ pk(le(nk—l)nk)'
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which is a decision problem with 7y (ny +1)/2 hypotheses. The first n; hypotheses
account for pruning and the rest account for merging decisions. The subscript on
hypotheses H refers to the two components to be merged for merging hypotheses
while in the case of pruning hypotheses the subscript refers to the label of the
component to be pruned which is preceded by zero.

The divergence measures used for the aforementioned decision problem are
presented in the following Section.

4.4 Divergence measures

A divergence measure is a function which establishes the distance of one probabil-
ity distribution to the other on a statistical manifold (Minka, 2005). A divergence
measure is a weaker form of a metric, in particular the divergence does not need
to be symmetric and does not need to satisfy the triangle inequality.

4.4.1 Integral square error

ISE is a divergence measure between two densities which is defined as

ISE(pllq) = f|p g dx (4.4)

for two densities p(x) and q(x). ISE has all properties of a metric.
ISE is used by Williams and Maybeck in (Williams and Maybeck, 2006) as a
divergence measure for mixture reduction. The cost of the hypothesis Hg obeys

ISE(H) = [ Ip(x) - pe(alHe ) . (45)

In this approach, the hypothesis which gives the smallest ISE will be chosen at
each step of the reduction i.e., the decision rule based on ISE becomes “decide
Hyg if ISE(Hg) < ISE(Hy) for all L # K”, where K and L are permissible indices
of the hypotheses.

An attractive property of the ISE as a divergence measure is that the ISE be-
tween two Gaussian mixtures has an analytical solution.

4.4.2 Kullback-Leibler Divergence

The global approach to mixture reduction problem can be posed as a multiple
hypothesis testing problem !. Suppose that we have a mixture p(x) with N com-
ponents as in (4.1). Suppose we have a number of reduced mixtures {P(X|Hj)}§<:1

and we would like to select one of them. Assuming that we have the data {x;}5_,

sampled from p(-), the selection of the best reduced mixture can be posed as

IFor a short introduction to multiple hypothesis testing and maximum a posteriori decision rule
see Appendix B.
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a multiple hypothesis testing problem where the test statistics become the log-
likelihood of the data given as

log p({x 1|7’-l Zlogp xi|H;) (4.6)
and the decision is made to select /{; where
j' & argmaxlog pxi}iy|H))- (47)
When we let the number of the samples S go to co, we see that
Jim < 1og p(1x)24 ) = E [log p(sf) (48)

by the law of large numbers. Kullback-Leibler divergence Dxr(p(-)llp(-|H;)) be-
tween p(-) and p(-[H;) is given as

Dialp(-lp(- 1)) = ~H(p(x) - B [log p(xIH;)] (4.9)

where H( ) is the entropy of its argument density. Therefore, the optimization (4.7)
is equivalently given as

j" & arg min Diey (p(x)llp(x|2;). (4.10)

The cost function in (4.10) can not be analytically evaluated when one of the
arguments in the KLD is a Gaussian mixture. Runnalls in (Runnalls, 2007) used
a nice analytical approximation of the KLD between two mixtures which can
only be used for evaluating the merging hypotheses. The approximation is in
fact an upper bound on Dk (p(x)llp(x|H j)), which is the cost of merging two
components I and ], and is denoted by 5(I, J) and defined by

B(I,]) 2w Dy (q(x; n")la(x; 1)) + w! Drer(q(x; 17)llg(x; '), (4.11)

Runnalls has shown that B(I,]) > Dgp(p(x)llp(x|H}j)) in (Runnalls, 2007). The
greedy MR algorithm suggested by (Runnalls, 2007) will be referred to as approx-
imate Kullback-Leibler (AKL) algorithm in the rest of this thesis.

4.4.3 «-Divergences

A generalization of the KLD called the a-divergence is a family of divergences
defined over a range of continuous hyper-parameter a € (—oo, co) by

(1 B Jp(x)(l+a)/2q(x)(l—a)/2 dx ).

4L

Dy (pllg) —
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Some special cases of of the a-divergence are

(lxigll D (pllq) = Dkr(pllg) (4.12a)
Jim Dq(pllq) = Dkr(4llp) (4.12b)
Dy(pllg) = Dr(pllg) (4.12¢)

where, Dy(p|lq) is the Hellinger distance (Bishop, 2006).
We will analyze the divergence measures given above in Example 4.1.

—— Example 4.1
Using an example given in (Minka, 2005) the effect of changing the hyper-param-
eter « in the divergence measure is illustrated and compared with the ISE dis-
tance. Consider the Gaussian mixture p(x) = 0.6 N (x;-2,1) + 0.4 N (x;2,0.16),
and its approximation g(x) which is a Gaussian distribution with unknown mean
and standard deviation. In Figure 4.3 the minimizing argument of D, (p||q) over
q is given for various values of a alongside the minimizing argument of ISE(p||r).
The parameters of g (mean and standard deviation) are given in Figure 4.4. The
parameters of q vary smoothly with a except when -1 < a < 1. When a « -1
the solution is mode seeking (the mode with the largest mass) and when a > 1
the optimal solution distributes the probability mass over the support and where
there is considerable probability mass in original distribution. The observations
made in this simple example are general and can be conveniently explained by
the definition of the a-divergence. The minimizing argument of ISE(p||r) in this
example does not have the same general interpretation; in this example ISE is
rather similar to D, for a = 1, if the two Gaussian densities where far away from
each other, ISE becomes more similar to D, for &« = —1. Another observation that
is made is that the minimizing argument of D,(p||q) over q does not vary so much
for values of a outside the interval of [-1, 1]. Therefore, we will only study the a-
divergence in the limit as @ — 1 where it corresponds to the KLD and as a — -1
where it corresponds to to the reversed Kullback-Leibler divergence (RKLD). In
applications where the mode seeking property of the solution is desired RKLD
is suitable. On the other hand, when the solution should preserve the statistical
moments of a mixture density KLD is the most appropriate.

In Paper F a Gaussian mixture reduction algorithm using the RKLD is pro-
posed which has the mode seeking property illustrated in Example 4.1.
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Figure 4.3: The Gaussian mixture p (black) is approximated by two Gaussian
densities q (red) and r (blue). q minimizes the a-divergence for different
values of @ and r minimizes the ISE.
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Figure 4.4: The mean and standard deviation of the Gaussian density q
which minimizes the a-divergence to p for different values of a (black). For
a =1 the mean and standard deviation of g matches those of p (red). Mean
and standard deviation of the Gaussian density r which minimizes the ISE
to p is given for comparison (blue).
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4.5 Numerical comparison of mixture reduction
algorithms

In Paper E three mixture reduction algorithms for mixtures of the exponential
family are given and are evaluated in simulations. In these algorithms the ISE
approach and AKL approach are compared with a local approach referred to as
Symmetrized Kullback-Leibler Divergence. The Symmetrized Kullback-Leibler
Divergence is used for the comparison of the merging hypotheses in local algo-
rithms such as (Kitagawa, 1994), (Chen et al., 2012b), (Granstrom and Orguner,
2012b) and (Granstrom and Orguner, 2012a). The symmetrized KLD (SKL) for
two component densities is defined as

Dsxr(I,]) = Dk1(qyll9,7) + Dir(q,llg,1)- (4.13)

This approach is referred to as SKL and is used in the numerical simulation in-
tended for comparison of different MR algorithms in the following.

In this section, eight mixture reduction examples are illustrated. In Figures
4.5,4.6,4.7,4.8,4.9,4.10,4.11 and 4.12 mixture densities of exponential, Weibull,
Rayleigh, Log-Normal, gamma, inverse gamma and Gaussian distribution are re-
duced, respectively. In each figure, a mixture density with 25 components along
with its reduced approximations with 3 components using three reduction algo-
rithms AKL, SKL and ISE are plotted. In these figures the original mixture den-
sity (black solid line) and its components (black dashed line) are given. In the sub-
figures AKL, SKL and ISE are used to approximate the original mixture which has
25 component densities with mixtures with 3 component densities. The approx-
imate densities (thick dashed lines) and their components (thin dashed line) are
drawn in different colors; red(AKL), green(SKL) and blue(ISE). AKL is used in
the left sub-figure, SKL is used in the center sub-figure and ISE is used in the
right sub-figure. The reduced mixture in the right sub-figure is not rescaled af-
ter possible pruning steps and is plotted as it is used in the ISE algorithm. For
implementation aspects of the ISE approach see Appendix C.



4.5 Numerical comparison of mixture reduction algorithms
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Concluding remarks

This chapter concludes the first part of this thesis. An overall summary of the con-
tributions given in the second part of the thesis and some directions for further
research will be given here. For more detailed discussion on the each contribu-
tion see the discussions and concluding remarks at the end of each contribution.

In paper A, the maximum entropy properties of the first-order stable spline
kernel for identification of linear time-invariant stable and causal systems are
shown. Analytical approximations are used to express the prior knowledge about
the properties of the impulse response of a linear time-invariant stable and causal
system. Future work on the subject includes studying maximum entropy inter-
pretation of other kernels used for regression using Gaussian processes. Further-
more, the maximum entropy approach can be used to construct new kernels for
system identification.

In papers B, variational Bayes (VB) method is used to compute an approxi-
mate posterior for the state smoothing problem for linear state-space models with
unknown and time-varying noise covariances. The VB method gives an approxi-
mate posterior for the unknown noise covariances. Nevertheless, the Variational
Bayes type algorithms approximate the posterior by minimizing Kullback-Leibler
divergence in zero forcing mode, meaning that if there are multiple modes in the
true posterior, the algorithm approximates only one of the modes. Hence the pos-
terior covariance might underestimate the true covariance significantly in such
cases. Computing a better estimate of estimation uncertainly for the noise covari-
ances can be a future work. Theoretical comparison of the proposed VB method
with expectation maximization and maximum likelihood estimate of the noise
covariances is another possible future work.

In paper C, the VB method is used for approximate inference in state-space
models with skewed measurement noise. A filter and a smoother that take into
account the skewness and heavy-tailedness of the measurement noise are pro-
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46 5 Concluding remarks

posed where skew-t distribution is used to model the distribution of measurem-
ent noise. Future research on the subject includes learning the skewness and
spread parameters of the measurement noise from the data. Further research on
the subject can include studying a class of hierarchical models for modeling the
noise parameters and devising algorithms for learning the parameters of such a
model from the data.

In paper D, a novel approximation method for Bayesian inference is proposed.
The proposed Bayesian inference technique is based on Taylor series approxima-
tion of the logarithm of the likelihood function. The proposed approximation
is devised for the case where the prior distribution belongs to the exponential
family of distributions. The linearization of the log-likelihood is performed with
respect to the sufficient statistic of the prior distribution. Extension of the pro-
posed method for prior distributions outside the exponential family of distribu-
tion can be a future research direction. The comparison of possible choices for
the linearization point and linearization methods with respect to the sufficient
statistic are among the future research problems.

In papers E and F, two contributions are dedicated to the mixture reduction
(MR) problem. The first contribution, generalizes the existing MR algorithms
for Gaussian mixtures to the exponential family of distributions and compares
them in an extended target tracking scenario. The second contribution, proposes
a new Gaussian mixture reduction algorithm using the reversed Kullback-Leibler
divergence which has specific peak preserving properties. Future research on
these topics includes evaluation of these methods in real life scenarios with real
measurements.

There is a general class of solutions to the Bayesian inference problem re-
ferred to by sampling methods which can obtain much better performance com-
pared to proposed approximation methods with respect to accuracy when the
computation time is not critical. Sampling methods are not covered in this the-
sis. That is why the approximations used in this thesis are specified as analytical
approximations. The proposed analytical approximations however, can be used
for initialization of the sampling based methods as well as selecting proposals in
Monte-Carlo (MC) methods. Speeding up these MC methods using the proposed
approximation methods is a general direction for future research.



Appendix






Expressions for some members of
exponential family

Essential expressions and formula for reduction of mixture densities of common
exponential family distributions are given in this section. These expressions can
be found in (Ardeshiri et al., 2014) as well. Some functions which are used in the
expressions such as the gamma function are defined here for completeness. The
gamma function is defined by

J x"" exp (—x) dx. (A.1)
0

The multivariate gamma function which is a generalization of the gamma func-
tion is

T(t) = J exp (— Tr (S))|S|=F ds (A.2)

5>0

The digamma function is given as

P(t) = T logI'(t) = ——. (A.3)
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The multivariate polygamma function of order # is defined as

(n) dn+1
Yy (1) = g log Lu(h) (A.4)
d .
dn+1 1=

The multinomial beta function in terms of the gamma function is given as

K
1 (aj)
=1
B (a) = ———. (A7)
(I o)
Exponential Distribution
Exp(x; A) = Aexp(—Ax) (A.8a)
Support: x € [0, +o0) (A.8b)
Parameter space: A € (0, +o0) (A.8¢c)
n=-A (A.8d)
A(n) = —log(-n) (A.8e)
V,A= 8_A = 1 (A.8f)
dn 1
h(x) =1 (A.8g)
E[h(x)] =1 (A.8h)
T(x)=x (A.8i1)
Solution to V,1 A = Y is given by
1
n=-v (A.9)
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Weibull Distribution with known shape &

) k (x\k1 Xk
Weibull(x; A, k) = 1 (1) exp (_F)
Support: x € [0, +00)
Parameter space: A € (0, +o0), k € (0, +o0)
1
(T
A(1) = —log(-n) - log(k)
0A 1
VA= o= =——
i -
h(x) = xk1
2k -1 1-k
] = (2 '
T(x) = xK
Solution to V,1 A = Y is given by
1
L _ _—

(A.10a)

(A.10Db)
(A.10c¢)

(A.10d)
(A.10e)

(A.101)
(A.10g)
(A.10h)

(A.10i)

(A.11)

)(—mk. (A12)
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Laplace Distribution with known mean

1
Laplace(x; p, b) = 5 &XP (—

Support: x € (—oo, )

Parameter space: b € (0, +o0), p e R

_ !
=%
2
A(n) =1o (——)
U g 1
dA 1
VA= —=——
Todn
h(x)=1
E[h(x)] =
T(x) = |x—pl
Solution to V1A = Y is given by
L 1

(A.13a)

(A.13b)
(A.13c¢)

(A.13d)

(A.13e)

(A.13f)

(A.13g)
(A.13h)
(A.131)

(A.14)
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Rayleigh Distribution

2
Rayleigh(x; 0) = iz exp (—x—z)
o o

Support: x € [0, +00)
Parameter space: o € (0, +o0)

1
1= 50

A(n) = ~log(-21)
VA= oA__L

dn
h(x) = x

I
E[h(x)] = | ==
T(x) = x?
Solution to V,1 A = Y is given by

1

nt = Y

The expression for Ey ;) [h(x)] is derived here

[o¢)

E[h(x) J-x%exp( —) x—a\/7 \/:

(A.15a)

(A.15b)
(A.15c¢)

(A.15d)
(A.15e)

(A.15f)
(A.15g)
(A.15h)

(A.151)

(A.16)

(A.17)



54 A Expressions for some members of exponential family

Log-normal Distribution

1 1
log —N(x; u,0) = ex (—— log x — 2) A.18a
g(ﬂ)xaznp202(g 1) ( )
Support: x € (0, +o0) (A.18b)
Parameter space: o € (0,+00), p € R (A.18c)
1n=(n12) (A.18d)
¥
171 = ; (AlSe)
1
172 = _ﬁ (A18f)
Ui
(n) = a2 log(=21) (A.18g)
JA JA
V, A= y 5 A.18h
1 (‘9771 3772) ( )
dA M )
- -_1 A.18i
dm 2 ( )
dA  ni 1 .
— = - — A.18
Iy 4y 2 (A-18)
(x) = ! (A.18k)
XV21
1 m 1
E[h(x)] = —= ex (___) A8l
] = = exp (5~ g (A18])
T(x) = (log(x), (log(x))z) (A.18m)
Solution to the system of equations V,1 A = Y is given by
-2
L
- A.19
Up) Y2 _ le ( a)
n=-2vi15 (A.19b)

The expression for Ey(y;;)[(x)] is derived here

R I T A B R
Bl =[] = e (e )‘ =0l a) 42
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Gamma Distribution

a

I'(a)

Support: x € (0, +o0)

a

x* exp(~px)

Gamma(x; a, p) =

Parameter space: a € (0, +00), € (0, +00)

1 =(11,12)
m=a-1
2 =—P
A(n) =logI'(my +1) = (11 + 1)log(~15)
JA JA
V,A=|=—,=—
’ (9171 9172)
JA
-— = +1)—log(—
o P11 + 1) —log(-13)
8_A _ _171 +1
N B M2
h(x) =1
E[h(x)] =1

T(x) = (log(x), x)

(A.21a)

(A.21b)
(A.21c)
(A.21d)
(A.21e)
(A.21f)
(A.21g)

(A.21h)
(A.21i)

(A.21j)

(A.21k)
(A.211)
(A.21m)

To solve the system of equations V, 1A = Y, firstlet Z = log(Y3)-Y; and u = 1, +1.

Then solve ¢(u) —log(u) + Z = 0 numerically and obtain

(A.22a)
(A.22b)
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Inverse Gamma Distribution

a

. _ ﬂ —a—1 (_E
IGamma(x; a, p) = F(a)x exp x)
Support: x € (0, +o0)
Parameter space: a € (0, +00), S € (0, +00)
1n=(n1,12)
m=-a-1
N2=-P
A(n) =log (=11 = 1) = (=11 — 1)log(-12)
JA JA
V,A=|=—,=—
! (9m %n)
JA
— = —1(-ny — 1) + log(—
on P(=m — 1) + log(-132)
94 _m+l
I 2
h(x) =1
E[h(x)] =1

1
T(x) =1 , —
() = (tog(x) 7
To solve the system of equations V1A =Y first let Z = log(Y3) + Y}
-1 — 1. Then solve i(u) + log(u) — Z = 0 numerically and obtain

no=-u-1,

(A.23i)

(A.23j)

(A.23K)
(A.231)

(A.23m)

and u =

(A.24a)
(A.24b)
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Univariate Gaussian Distribution

N(x1,0%) = —— exp (‘L(x - y)z)

aV2n 202
Support: x € R

Parameter space: o € (0,+00), p € R

1 =(n1,12)
U
M= 52
_ 1
M2 By
n
(1 a2 log(~215)
0A 0A
V,A=|——, —
1 (9’71 9’72)
8_A _ . ™m
om 21,

A _ i 1
Iy 4y 2
1
h(x) = —

(x) NoT
1
E[h(x)] = —
[h(x)] Vor
T(x) = (x, x2)

Solution to the system of equations V,1 A = Y is given by
-2
Y, - v
L L
mo=-2Y11;.

=

(A.25j)
(A.25K)

(A.251)

(A.25m)

(A.26a)

(A.26b)
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Multivariate Gaussian Distribution

N(x;m, P) = (27‘()_§|P|_]7 exp( ! (x —m)TP~ (x - m)) (A.27a)

2

Support: x € R (A.27b)
Parameter space: P € Rk and P = PT > 0, He RK (A.27¢)
1= (1m1,12) (A.27d)
nm=P"'m (A.27e)
Ny = —%P’l (A.27f)

T |
A() = =gy m = 5 log| =21 (A.27g)

dA JA )
V,A=|—,=— A.27h
1 (3’71 I, ( )
2\ 1 _ .
8_171 = —51/]’11‘]721 (A271)
0A 1 _ _ 1 _ .
I ZWzT’h’ﬁr’hT - 5’721 (A.27))
h(x) = (2m) ™2 (A.27K)
E[h(x)] = (270) 2 (A.27])
T(x) = (x, xxT) (A.27m)
Solution to system of equations V, 1A = Y is given by
1 _

ny = —E(Yz -y'v)t, (A.28)

A (A.29)
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Gaussian Gamma Distribution

GaussianGamma (x, 7; 4, A, a, B) = N (x; 7 %)Gamma(r; a, B) (A.30a)
Support: x € R, T € (0, +o0) (A.30Db)
Parameter space: @ € (0,+00), f € (0,+00), A €(0,+00), peR
(A.30c¢)
1= (111, 12,113, 11a) (A.30d)
n=a- % (A.30e)
My =—p— /\Tﬂz (A.30f)
s = Ap (A.30g)
Ny = —% (A.30h)

1y, 1
A(n) =logl (171 + 5) -3 log(—214)

—( +1)1 e B (A.30)
Mt g Jlog| =2t 4 30i
A 9A IA IA
VA= 22, 20 20 A.30j
! (9111 Iy’ I3 9114) (A.-50)
A 1 n3 )
= = + = |-log|-#, + — A.30k
o (’71 2) g( M2 o ( )
1
g—A S 1 (A.301)
M2 _,72+4l_1734
215 + (11 + &
g—A:——% (m i) (A.30m)
& 4'74(—’72+4%)
oA mi(m+3) 1 (A.30m)
I a2 (_,72+ 4*154) 214
h(x) = %ﬁ (A.300)
1
E[h(x)] = Wors (A.30p)

T(x)= (log(r), T, TX, sz) (A.30q)
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To solve the system of equations V.,]LA = Y first let Z = log(-Y,) — ¥; and
u=r1m + % Then solve ¢(u) —log(u) + Z = 0 numerically and obtain

= u—%, (A.31a)
-1
Lo 1y
- (2 4y, A31
un 2\ 7, + Yy (A.31b)
211, Y.
k= B3 (A31c)
Y;
2 41
ph= 5 T3 (A.31d)
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Dirichlet distribution

K
p— 1 l 1

Dirg(x; a B_ ]_1[ X; (A.32a)

i=
Support: x; € [0,1]fori=1---K and Zx,- =1 (A.32b)
Parameter space: a; > 0and K > 2 (A.32¢)
=", 1k) (A.32d)
ni = ai -1 (A.32e)

K
Zlogr ni +1) logF[Z ni+1) ] (A.32f)
i=1

i=1

dA A A

V,A = (9_m' o ,%) (A.32g)

K
g—: =i +1)- IP( (mi + 1)] (A.32h)

! i=1
h(x) = 1 (A.32i)
E[h(x)] = 1 (A.32j)
T(x) = (log(x,), - ,log(x¢) (A.32K)

The system of equations V, 1A = Y can be solved using a numerical method such
as newton method where the Hessian is given by,

2 K
% P +1) - gV [Z(mﬁl)], (A.33a)
' k=1

A —— 3 1 A.33b
o =Y [;mw )| (A.33D)
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Wishart Distribution

|x|3(n-d-1) exp Tr (—%V”X)
22741, (Ln) V2"

Wi (X;n, V)=

Support: X e R”? and X = X" > 0

Parameter space: V € R>* and V=VvT>0 n>d

1n = (11, 12)

m=n-d-1)
_ 1 -1

n=-5V

d+1 d+1
A(ﬂ)=—(m+ 5 )10g|—172|+10gfd(171+ > )

an (28 24)
1 am’ I,

%=—logl—nzl+¢d(n1+d;1)
dA d+1\ _;
=45
hX)=1

E[h(X)] = 1

T(X) = (log|X]|, X)

(A.34a)

(A.34b)

(A.34c¢)
(A.34d)

(A.34e)

(A.34f)
(A.34g)
(A.34h)
(A.34i)

(A.34)

(A.34k)
(A.34])
(A.34m)

To solve the system of equations V,1A =Y first let Z = log|Y,| - Y; and u =

m + d—erl. Then solve ¢;(u) — dlog(u) + Z = 0 numerically and obtain

_d+1
1/, 2 4

L
1

L_ -1
ny =-uYp.

=u

(A.35a)
(A.35Db)
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Inverse Wishart Distribution

W3 (v=d-1) exp Tr (—%\I’X’l)

IW,; (X;v, W) = (A.36a)
220240, (L(v —d - 1)) X]2”
Support: X e R”¥ and X = X" > 0 (A.36Db)
Parameter space: v > 2d W € R4 w = wT 5 (A.36¢)
1= (1, 12) (A.36d)
N = —%v (A.36€)
i = —%\y (A.36f)
d+1 d+1
A = [+ 5 iog -l togTa (- - 31 ) (36
JA O0A
V,A=|=—, =— A.36h
! (9771 9’72) (A-36h)
dA d+1 .
o log | = 12| = 4 (—111 - ) (A.36i)
dA d+1\ _; .
Ere (’71 +— )772 (A.36))
h(X)=1 (A.36k)
E[h(X)] = 1 (A.36)
T(X) = (log|X], X" (A.36m)

To solve the system of equations VA=Y first let Z = —log(Y,) — Y, and u =
-1 = d—;rl. Then solve —y;(u) + dlog(1) + Z = 0 numerically and obtain

(A.37a)

L
1
ny = -uyst (A.37b)
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Gaussian Inverse Wishart Distribution

GIW (x, X;m, P,v, W) = N (x;m, P) IW 4 (X; v, V) (A.38a)
Support: x € RF, X e R and X = X" > 0 (A.38Db)
Parameter space: v >2d W e R, w =wT s o,
PeRF* and P = PT >0, peRF (A.38¢)
1= (11,12, 13, Na) (A.38d)
= —%v (A.38e)
1
N3 =P"'m (A.38)
1
na=-5P" (A.38h)
d+1 d+1
A(n) = (111 + 5 )logl — 1|+ log I (—’Il - )
[ 1 .
=231 113 = 5 log | =214 (A.38i)
A JA JA JA
Vr]A = (9_’ a_: a—;a—) (A.38))
I Iy’ Iz dny
dA d+1
S =togl = el = pa-m - 157 (A.38K)
dA d+1\ _
dA 1 -
JA 1 _ 1 _
Fr Zmeﬂng - 5’741 (A.38n)
h(x, X) = (27)7%/2 (A.380)
Elh(x, X)] = (2m) ™2 (A.38p)

T(x,X) = (log|X|, X x, xxT) (A.38q)



65

To solve the system of equations ViA =Y first let Z = —log(Y,) — ¥; and
u=-m - d%] Then solve —tp;(u) + d log(u) + Z = 0 numerically and obtain

I d+1

M= (A.39a)

ny = —uy;?t, (A.39b)
1 -

ny = —5(Ya - Yivs) (A.39¢)

nk = (-2vsk) (A.39d)






Multiple hypothesis testing

Here, the multiple hypothesis testing problem and the maximum a posteriori de-
cision rule is given for the sake of completeness (Ardeshiri et al., 2014). For more
complete treatment see (Kay, 1998).

Consider that we want to decide among M hypotheses {H;, H,, ..., Hps}. Let
the cost assigned to the decision to choose H; when H; is true is denoted by C;;

where

_J 0 i=j
cij_{l ie] (B.1)

The expected Bayes risk (Kay, 1998) becomes

M

R:iZC,JPHlH H;)). (B.2)

i=1 j=1

We are looking for a decision rule that minimizes R. Let us partition the space
to regions R; for i = 1 : M so that

M M
R - ;;c,fpocm) (H;) dx

=1 j= R;
M M

=) | ) _CiiP(H;l)p(x) dx (B.3)
i=1 R; j:l
M

= Z Cip(x) dx
i=1 R;
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where C;(x) = inl CijP(H;|x). Since each data x should trigger only one decision,
i.e. assigned to only one of the R; partitions we should decide Hj for which C; is
minimum.

Since C;(x) = Zj\il P(H;lx) = P(Hilx), Ci(x) is minimized if P(H;|x) is maxi-
mized. Thus the decision rule is decide Hj if P(Hy|x) > P(H;|x) for i = k. For
equal prior probabilities P(Hy) = P(H;) the decision rule will be to decide Hj if
p(x|Hg) > p(x|'H;) for i # k. This decision rule is also referred to as maximum a

posteriori decision rule.

If the prior probabilities are not equal due to e.g., heuristics P(Hy) = P(H;),
Bayes rule P(H;|x) « p(x|H;)P(H;) can be used. This possibility is not exploited
in this thesis.



Implementation aspects of the ISE
approach

An advantage of the ISE metric is that, it can be computed analytically for many
distributions (Ardeshiri et al., 2015a). In the ISE approach two parameters can be
varied to create slightly different reduction algorithms as detailed below (Ardeshiri
etal.,, 2014):

1. In the first Varlatlon the ISE is calculated for each hypothesis according
to ISE(Hk) flp — pr(x|Hg)|? dx and the density after pruning is re-
normalized. This variation is consistent with the presentation of the ISE
algorithm so far in this technical report.

2. In the second variation, as it is pointed out in (Williams and Maybeck,
2006), when the ISE is being calculated for a pruning hypothesis the rescal-
ing can be skipped since re-normalizing the weights will increase the error
value in parts of the support that are not affected by the pruning hypothesis.
This choice also brings substantial computational savings.

3. In the third variation, instead of comparing p(x|H) with the original mix-
ture p(x), it is compared with the resulting mixture of the previous reduc-
tion step px(x), as given here

ISE(H) = [ 1910 = peCalH) d
In this way, the ISE metric for merging decision can be simplified to

ISE(H;y) = (w))?Q(L 1) + (w))?Q(J, ])
+@W2QIJ, I7) + 2w'w! Q(I, )
2w QI 1) - 2w W Q(J, I)).
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where,
oL, J) = fq(x; () dx. (C.1)

Q(I,]) can be calculated analytically for many basic densities of interest be-
longing to the exponential family such as Gaussian, gamma and Wishart
distributions. For explicit expressions for the exponential family of distri-
bution see (Ardeshiri et al., 2015a) and (Ardeshiri et al., 2014).

Similarly the ISE metric for pruning decision can be simplified as in

W\ N N N
ISE(Hgr) = (1 —wl) [Q(I,I)—zzle(I,i)+ ZZw wJQ (i, §)

=1 i=1 j=1

4. The fourth variant is similar to the third variant in terms of the choice of the
reference density, but the mixture is not renormalized after each pruning
which results in the expression

ISE(Hor) = (w')*Q(L )
for pruning hypotheses.

Calculation of the ISE for each hypothesis at every step of the reduction is
costly. A scheme is suggested here to cache the calculated quantities to reduce the
computational cost of the reduction. The cost reduction scheme is given for the
second type of implementation of the ISE approach, where the mixture density
after pruning hypothesis is not re-normalized.

In the first step of the reduction of the mixture density (4.1) merging of all
possible pairs of components results in 3N (N —1) hypotheses. For the evaluation
of these hypotheses the resultant component of each merging should be calcu-
lated. To calculate the ISE of each hypothesis Q(-, -) should be calculated for
all pairs of components in the mixture as well as the pair of components where
one component is among the merged components and the other one is among the
existing components. All these quantities should be stored and can be reused in
the future reduction steps.

At the k' step of the reduction of the mixture density given in (4.1), the re-
duced density is denoted by py(x). In order to keep the notation less cluttered, let
the term ¢/ denote w/q(x; 17]); p denote p(x) and py denote py(x). Let us assume
that the cost of the reduction hypotheses at the k*" stage denoted by ISE;(Hy) are
stored in a vector Y and let M = argmin ISE;(Hy) for all permissible values of
R.
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When M corresponds to a pruning hypothesis, for example M = 0], the vector
Y},1 can be updated with less computations for next pruning hypotheses using

ISE g1 (HosIM = 0]) = f(p pi+q + ) dx
=J(p—pk+q5)2dX+f(q’)2 dX+2J-q’(p—pk+qS)dx
=J-(p—pk+q5)2 dx+J.(q’)2 dx+2J.q’(p—pk)dx+2Jq’qs dx (C.2)

=1ISEr(Hps) + J (qI)2 dx +2 J q](p —px) dx +2Jqlq5 dx,

A(])

where, the quantity ISE;(Hs) is already known from the previous step and A(])

is a part of the ISE added to elements of Y; due to the pruning of the J** compo-
nent.

Similarly, when M corresponds to a pruning hypothesis, for example M =

0], the vector Y;,; can be updated with less computations for the next merging
hypotheses using

1SEe,1 (HsrlM = 0]) = [ (p=pi+q/ +4° +q7 = g7 dx
=J(p—pk+qs+qT—qST)2 dx+f(q’)2dX+2Jq’(p—pk+qs+qT—qST)dx
=f(p—pk+q5+qT—qST)2 dx+J-(q’)2dx+2jq](P—pk>dx
+2fq’(q5+qT—qST)dx

— ISEx (Hs) + A(J) + 2jqf<qs +qT —gT) dx.

(C.3)

After each pruning step all elements of vector Yy, corresponding to the pruned
component will be eliminated from Y, .

Using a similar approach, when M corresponds to a merging hypothesis, say
M = I], the vector Yj,; can be updated with less computations for the next prun-
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ing hypotheses using

ISEj, (HosIM = I]) = f(p —pr+qd +q"—q7 +4°)* dx

=J(p—pk+q5)2 <1x+J(q’+qI—q”)2 dx
i

+2 | (@ +q" - 4")p-pr+4q°) dx

J

=f(p—pk+qs)2 dx+f(q’+q’—q”)2 dx

i (C.4)
2 [ = p-podre2 [ (g +q - gg® ax

J
= ISEy(Hos) + J (q' +q"—q")? dx + 2[(61] +q" = q")(p - py) dx

c(r)
+ 2J- (@' +4q"-4")q° dx,
and for the next merging hypotheses using

ISEjy1 (HsrIM = IJ) = J(p —pe+d +q' —q7 +4° +q" - ¢°T) dx
~ [-peratraT g TR axe [ (4] q - g dr
+2J(q’+ql—q”)(p—pk+qs +q" —¢°") dx
~[-peraraT =g TR axe [ (g q - g dr (€5)

+2J-(q]+ql —q")(p - pi) dx

+2J.(q’ +q' =q")(¢" +q" - ¢°T) dx

=ISBy(Hsr) + C(I,]) + 2J(q7 +q' =a")(@" +q" - ¢°T) dx.

When two components I and | are merged, the merged component labeled

I] will obtain the label of component I in the computation environment and all
elements of Yy, corresponding to element ] will be eliminated. The vector Yj,;
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should be updated for the new component as in
ISEge1 (HpsIM = 17) = f (p=pi+d +q' =97 +q° +q7 - qV7)? dx
— [ axe [0 q g g ar (.o
+2 f (p=p)(d +q" +4q° —q"®) dx,

where, the first term is known from the last reduction step.
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